Algebraic Geometry An Introduction /

Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject and assumes only the standard background of undergraduate algebra. It is developed from a masters...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Perrin, Daniel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2008.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02940nam a22004695i 4500
001 978-1-84800-056-8
003 DE-He213
005 20151125022046.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781848000568  |9 978-1-84800-056-8 
024 7 |a 10.1007/978-1-84800-056-8  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Perrin, Daniel.  |e author. 
245 1 0 |a Algebraic Geometry  |h [electronic resource] :  |b An Introduction /  |c by Daniel Perrin. 
264 1 |a London :  |b Springer London,  |c 2008. 
300 |a XI, 263 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Affine algebraic sets -- Projective algebraic sets -- Sheaves and varieties -- Dimension -- Tangent spaces and singular points -- Bézout's theorem -- Sheaf cohomology -- Arithmetic genus of curves and the weak Riemann-Roch theorem -- Rational maps, geometric genus and rational curves -- Liaison of space curves. 
520 |a Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject and assumes only the standard background of undergraduate algebra. It is developed from a masters course given at the Université Paris-Sud, Orsay, and focusses on projective algebraic geometry over an algebraically closed base field. The book starts with easily-formulated problems with non-trivial solutions – for example, Bézout’s theorem and the problem of rational curves – and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. The treatment uses as little commutative algebra as possible by quoting without proof (or proving only in special cases) theorems whose proof is not necessary in practice, the priority being to develop an understanding of the phenomena rather than a mastery of the technique. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848000551 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84800-056-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)