Introduction to Geometric Computing
The geometric ideas in computer science, mathematics, engineering, and physics have considerable overlap and students in each of these disciplines will eventually encounter geometric computing problems. The topic is traditionally taught in mathematics departments via geometry courses, and in compute...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Springer London,
2008.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Euclidean Geometry
- 2D Computational Euclidean Geometry
- Geometric Predicates
- 3D Computational Euclidean Geometry
- Affine Transformations
- Affine Intersections
- Genericity in Geometric Computing
- Numerical Precision
- Non-Euclidean Geometries
- 1D Computational Spherical Geometry
- 2D Computational Spherical Geometry
- Rotations and Quaternions
- Projective Geometry
- Homogeneous Coordinates for Projective Geometry
- Barycentric Coordinates
- Oriented Projective Geometry
- Oriented Projective Intersections
- Coordinate-Free Geometry
- Homogeneous Coordinates for Euclidean Geometry
- Coordinate-Free Geometric Computing
- to CGAL
- Raster Graphics
- Segment Scan Conversion
- Polygon-Point Containment
- Illumination and Shading
- Raster-Based Visibility
- Ray Tracing
- Tree and Graph Drawing
- Tree Drawing
- Graph Drawing
- Geometric and Solid Modeling
- Boundary Representations
- The Halfedge Data Structure and Euler Operators
- BSP Trees in Euclidean and Spherical Geometries
- Geometry-Free Geometric Computing
- Constructive Solid Geometry
- Vector Visibility
- Visibility from Euclidean to Spherical Spaces
- Visibility in Space.