Model-based Process Supervision A Bond Graph Approach /

Model-based fault detection and isolation requires a mathematical model of the system behaviour. Modelling is important and can be difficult because of the complexity of the monitored system and its control architecture. The authors use bond-graph modelling, a unified multi-energy domain modelling m...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Samantaray, Arun K. (Συγγραφέας), Bouamama, Belkacem Ould (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2008.
Σειρά:Advances in Industrial Control,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04666nam a22006375i 4500
001 978-1-84800-159-6
003 DE-He213
005 20151204172118.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781848001596  |9 978-1-84800-159-6 
024 7 |a 10.1007/978-1-84800-159-6  |2 doi 
040 |d GrThAP 
050 4 |a TJ241 
072 7 |a TGXT  |2 bicssc 
072 7 |a TEC020000  |2 bisacsh 
082 0 4 |a 670  |2 23 
100 1 |a Samantaray, Arun K.  |e author. 
245 1 0 |a Model-based Process Supervision  |h [electronic resource] :  |b A Bond Graph Approach /  |c by Arun K. Samantaray, Belkacem Ould Bouamama. 
264 1 |a London :  |b Springer London,  |c 2008. 
300 |a XX, 474 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Industrial Control,  |x 1430-9491 
505 0 |a to Process Supervision -- Bond Graph Modeling in Process Engineering -- Model-based Control -- Bond Graph Model-based Qualitative FDI -- Bond Graph Model-based Quantitative FDI -- Application to a Steam Generator Process -- Diagnostic and Bicausal Bond Graphs for FDI -- Actuator and Sensor Placement for Reconfiguration -- Isolation of Structurally Non-isolatable Faults -- Multiple Fault Isolation Through Parameter Estimation -- Fault Tolerant Control. 
520 |a Model-based fault detection and isolation requires a mathematical model of the system behaviour. Modelling is important and can be difficult because of the complexity of the monitored system and its control architecture. The authors use bond-graph modelling, a unified multi-energy domain modelling method, to build dynamic models of process engineering systems by composing hierarchically arranged sub-models of various commonly encountered process engineering devices. The structural and causal properties of bond-graph models are exploited for supervisory systems design. The structural properties of a system, necessary for process control, are elegantly derived from bond-graph models by following the simple algorithms presented here. Additionally, structural analysis of the model, augmented with available instrumentation, indicates directly whether it is possible to detect and/or isolate faults in some specific sub-space of the process. Such analysis aids in the design and resource optimization of new supervision platforms. Static and dynamic constraints, which link the time evolution of the known variables under normal operation, are evaluated in real time to determine faults in the system. Various decision or post-processing steps integral to the supervisory environment are discussed in this monograph; they are required to extract meaningful data from process state knowledge because of unavoidable process uncertainties. Process state knowledge has been further used to take active and passive fault accommodation measures. Several applications to academic and small-scale-industrial processes are interwoven throughout. Finally, an application concerning development of a supervision platform for an industrial plant is presented with experimental validation. Model-based Process Supervision provides control engineers and workers in industrial and academic research establishments interested in process engineering with a means to build up a practical and functional supervisory control environment and to use sophisticated models to get the best use out of their process data. 
650 0 |a Engineering. 
650 0 |a Chemical engineering. 
650 0 |a Computer simulation. 
650 0 |a Thermodynamics. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 0 |a Control engineering. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 0 |a Manufacturing industries. 
650 0 |a Machines. 
650 0 |a Tools. 
650 1 4 |a Engineering. 
650 2 4 |a Manufacturing, Machines, Tools. 
650 2 4 |a Control. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Industrial Chemistry/Chemical Engineering. 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer. 
650 2 4 |a Industrial and Production Engineering. 
700 1 |a Bouamama, Belkacem Ould.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848001589 
830 0 |a Advances in Industrial Control,  |x 1430-9491 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84800-159-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)