Catalan's Conjecture

Eugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it. Catalan’s Conjecture presents thi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schoof, René (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2008.
Έκδοση:1.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03197nam a22004815i 4500
001 978-1-84800-185-5
003 DE-He213
005 20131217173628.0
007 cr nn 008mamaa
008 100707s2008 xxk| s |||| 0|eng d
020 |a 9781848001855  |9 978-1-84800-185-5 
024 7 |a 10.1007/978-1-84800-185-5  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Schoof, René.  |e author. 
245 1 0 |a Catalan's Conjecture  |h [electronic resource] /  |c by René Schoof. 
250 |a 1. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2008. 
300 |a IX, 124 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a The Case “q = 2” -- The Case “p = 2” -- The Nontrivial Solution -- Runge’s Method -- Cassels’ theorem -- An Obstruction Group -- Small p or q -- The Stickelberger Ideal -- The Double Wieferich Criterion -- The Minus Argument -- The Plus Argument I -- Semisimple Group Rings -- The Plus Argument II -- The Density Theorem -- Thaine’s Theorem. 
520 |a Eugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it. Catalan’s Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The first few sections of the book require little more than a basic mathematical background and some knowledge of elementary number theory, while later sections involve Galois theory, algebraic number theory and a small amount of commutative algebra. The prerequisites, such as the basic facts from the arithmetic of cyclotomic fields, are all discussed within the text. The author dissects both Mihailescu’s proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine’s theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further. Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848001848 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84800-185-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)