A Topological Aperitif

This is a book of elementary geometric topology, in which geometry, frequently illustrated, guides calculation. The book starts with a wealth of examples, often subtle, of how to be mathematically certain whether two objects are the same from the point of view of topology. After introducing surfaces...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Jordan, David (Συγγραφέας), Huggett, Stephen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03503nam a22004575i 4500
001 978-1-84800-913-4
003 DE-He213
005 20151204161415.0
007 cr nn 008mamaa
008 100301s2009 xxk| s |||| 0|eng d
020 |a 9781848009134  |9 978-1-84800-913-4 
024 7 |a 10.1007/978-1-84800-913-4  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 |a Jordan, David.  |e author. 
245 1 2 |a A Topological Aperitif  |h [electronic resource] /  |c by David Jordan, Stephen Huggett. 
264 1 |a London :  |b Springer London,  |c 2009. 
300 |a IX, 152 p. 135 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foreword (written by Roger Penrose) -- Homeomorphic Sets -- Topological Properties -- Equivalent Subsets -- Surfaces and Spaces -- Polyhedra -- Winding Number -- Appendix A: Continuity -- Appendix B: Knots -- Appendix C: History -- Appendix D: Solutions -- Bibliography -- Index. 
520 |a This is a book of elementary geometric topology, in which geometry, frequently illustrated, guides calculation. The book starts with a wealth of examples, often subtle, of how to be mathematically certain whether two objects are the same from the point of view of topology. After introducing surfaces, such as the Klein bottle, the book explores the properties of polyhedra drawn on these surfaces. More refined tools are developed in a chapter on winding number, and an appendix gives a glimpse of knot theory. Moreover, in this revised edition, a new section gives a geometrical description of part of the Classification Theorem for surfaces. Several striking new pictures show how given a sphere with any number of ordinary handles and at least one Klein handle, all the ordinary handles can be converted into Klein handles. Numerous examples and exercises make this a useful textbook for a first undergraduate course in topology, providing a firm geometrical foundation for further study. For much of the book the prerequisites are slight, though, so anyone with curiosity and tenacity will be able to enjoy the Aperitif. "…distinguished by clear and wonderful exposition and laden with informal motivation, visual aids, cool (and beautifully rendered) pictures…This is a terrific book and I recommend it very highly." MAA Online "Aperitif conjures up exactly the right impression of this book. The high ratio of illustrations to text makes it a quick read and its engaging style and subject matter whet the tastebuds for a range of possible main courses." Mathematical Gazette "A Topological Aperitif provides a marvellous introduction to the subject, with many different tastes of ideas." Professor Sir Roger Penrose OM FRS, Mathematical Institute, Oxford, UK. 
650 0 |a Mathematics. 
650 0 |a Topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
700 1 |a Huggett, Stephen.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848009127 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84800-913-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)