Computable Models

Computable models pervade present day science and engineering and are implicit in the specification of software systems. Raymond Turner first provides a logical framework for specification and the design of specification languages, then uses this framework to introduce and study computable models. I...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Turner, Raymond (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03208nam a22005415i 4500
001 978-1-84882-052-4
003 DE-He213
005 20151204173948.0
007 cr nn 008mamaa
008 100301s2009 xxk| s |||| 0|eng d
020 |a 9781848820524  |9 978-1-84882-052-4 
024 7 |a 10.1007/978-1-84882-052-4  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Turner, Raymond.  |e author. 
245 1 0 |a Computable Models  |h [electronic resource] /  |c by Raymond Turner. 
264 1 |a London :  |b Springer London,  |c 2009. 
300 |a XII, 240 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a What is a Computable Model? -- Typed Predicate Logic -- Data Types -- Definability -- Specification -- Functions -- Preconditions -- Natural Numbers -- Typed Set Theory -- Systems Modeling -- A Type of Types -- Schemata -- Separation Types -- Recursive Schemata -- Inductive Types -- Recursive Functions -- Schema Definitions -- Computable Ontology -- Classes -- Classes of Functions -- Computable Analysis -- Programming Language Specification -- Abstract Types -- Conclusion. 
520 |a Computable models pervade present day science and engineering and are implicit in the specification of software systems. Raymond Turner first provides a logical framework for specification and the design of specification languages, then uses this framework to introduce and study computable models. In doing so he presents the first systematic attempt to provide computable models with a logical foundation. Computable models have wide-ranging applications from programming language semantics and the definition of specification languages, through to knowledge representation languages and formalisms for natural language semantics. They are also implicit in the computer modelling employed in many areas of science and engineering. This detailed investigation into the logical foundations of specification and its application to the construction of computable models should be of interest to a wide range of researchers including graduate students in mathematical logic and computer science. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Computer logic. 
650 0 |a Mathematical logic. 
650 0 |a Artificial intelligence. 
650 0 |a Computational linguistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Logics and Meanings of Programs. 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Language Translation and Linguistics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848820517 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84882-052-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)