A Course on Finite Groups

A Course on Finite Groups introduces the fundamentals of group theory to advanced undergraduate and beginning graduate students. Based on a series of lecture courses developed by the author over many years, the book starts with the basic definitions and examples and develops the theory to the point...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Rose, H.E (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2009.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03283nam a22004815i 4500
001 978-1-84882-889-6
003 DE-He213
005 20151204164848.0
007 cr nn 008mamaa
008 100301s2009 xxk| s |||| 0|eng d
020 |a 9781848828896  |9 978-1-84882-889-6 
024 7 |a 10.1007/978-1-84882-889-6  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Rose, H.E.  |e author. 
245 1 2 |a A Course on Finite Groups  |h [electronic resource] /  |c by H.E. Rose. 
264 1 |a London :  |b Springer London,  |c 2009. 
300 |a XII, 311 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Introduction—The Group Concept -- Elementary Group Properties -- Group Construction and Representation -- Homomorphisms -- Action and the Orbit–Stabiliser Theorem -- -Groups and Sylow Theory -- Products and Abelian Groups -- Groups of Order 24 Three Examples -- Series, Jordan–Hölder Theorem and the Extension Problem -- Nilpotency -- Solubility -- Simple Groups of Order Less than 10000 -- Appendices A to E. 
520 |a A Course on Finite Groups introduces the fundamentals of group theory to advanced undergraduate and beginning graduate students. Based on a series of lecture courses developed by the author over many years, the book starts with the basic definitions and examples and develops the theory to the point where a number of classic theorems can be proved. The topics covered include: group constructions; homomorphisms and isomorphisms; actions; Sylow theory; products and Abelian groups; series; nilpotent and soluble groups; and an introduction to the classification of the finite simple groups. A number of groups are described in detail and the reader is encouraged to work with one of the many computer algebra packages available to construct and experience "actual" groups for themselves in order to develop a deeper understanding of the theory and the significance of the theorems. Numerous problems, of varying levels of difficulty, help to test understanding. A brief resumé of the basic set theory and number theory required for the text is provided in an appendix, and a wealth of extra resources is available online at www.springer.com, including: hints and/or full solutions to all of the exercises; extension material for many of the chapters, covering more challenging topics and results for further study; and two additional chapters providing an introduction to group representation theory. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 0 |a Science education. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Science Education. 
650 2 4 |a Group Theory and Generalizations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848828889 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84882-889-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)