Programming Finite Elements in Java™

The finite element method (FEM) is a computational technique for solving problems which are described by partial differential equations or which can be formulated as functional minimization. The FEM is commonly used in the design and development of products, especially where structural analysis is i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nikishkov, Gennadiy (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04387nam a22004815i 4500
001 978-1-84882-972-5
003 DE-He213
005 20151204170845.0
007 cr nn 008mamaa
008 100301s2010 xxk| s |||| 0|eng d
020 |a 9781848829725  |9 978-1-84882-972-5 
024 7 |a 10.1007/978-1-84882-972-5  |2 doi 
040 |d GrThAP 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Nikishkov, Gennadiy.  |e author. 
245 1 0 |a Programming Finite Elements in Java™  |h [electronic resource] /  |c by Gennadiy Nikishkov. 
264 1 |a London :  |b Springer London,  |c 2010. 
300 |a XVI, 402 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Finite Element Formulation -- Finite Element Equations for Heat Transfer -- FEM for Solid Mechanics Problems -- Finite Element Program -- Finite Element Solution -- Finite Element Processor -- Finite Element Model -- Elastic Material -- Elements -- Numerical Integration -- Two-dimensional Isoparametric Elements -- Implementation of Two-dimensional Quadratic Element -- Three-dimensional Isoparametric Elements -- Implementation of Three-dimensional Quadratic Element -- Assembly and Solution -- Direct Equation Solver -- Iterative Equation Solver -- Load Data and Load Vector Assembly -- Stress Increment, Residual Vector and Results -- Elastic–Plastic Problems -- Mesh Generation -- Mesh Generator -- Two-dimensional Mesh Generators -- Generation of Three-dimensional Meshes by Sweeping -- Pasting Mesh Blocks -- Mesh Transformations -- Copying, Writing and Reading Mesh Blocks -- Visualization of Meshes and Results -- to Java 3D™ -- Visualizer -- Visualization Scene Graph -- Surface Geometry -- Edge and Face Subdivision -- Surface Subdivision -- Results Field, Color Scale, Interaction and Lights. 
520 |a The finite element method (FEM) is a computational technique for solving problems which are described by partial differential equations or which can be formulated as functional minimization. The FEM is commonly used in the design and development of products, especially where structural analysis is involved. The simple object model of the Java™ programming language lends itself to efficient implementation of FEM analysis. Programming Finite Elements in Java™ teaches the reader FEM algorithms and their programming in Java™ through a single finite element Java™ program. The compact, simple code makes it straightforward to understand the algorithms and their implementation, thereby encouraging developers to extend the code to their own tasks. All of the main aspects of finite element techniques are considered: • finite element solution; • generation of finite element meshes; and • visualization of finite element models and results with Java 3D™. The step-by-step presentation includes algorithm programming and code explanation at each point. Problems and exercises are provided for each chapter, with Java™ source code and problem data sets available from http://extras.springer.com/2010/978-1-84882-971-8. Graduate students using the FEM will find the simple but detailed object-oriented programming methods presented in this textbook to be of great assistance in understanding the FEM, including mesh generation and visualization. Programming Finite Elements in Java™ will also be of interest to senior undergraduates doing special studies encompassing the FEM. Researchers and practicing engineers already familiar with the FEM but seeking an alternative approach will find this book readily suited to self study. 
650 0 |a Engineering. 
650 0 |a Computer programming. 
650 0 |a Computer mathematics. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848829718 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84882-972-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)