Mathematics for Computer Graphics

John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD, and other areas of computer graphics. Covering all the mathematical techniques required to resolve geometric problems and design comput...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Vince, John (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2010.
Έκδοση:3rd Edition.
Σειρά:Undergraduate Topics in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03118nam a22005175i 4500
001 978-1-84996-023-6
003 DE-He213
005 20151204163011.0
007 cr nn 008mamaa
008 100301s2010 xxk| s |||| 0|eng d
020 |a 9781849960236  |9 978-1-84996-023-6 
024 7 |a 10.1007/978-1-84996-023-6  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a UYA  |2 bicssc 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Vince, John.  |e author. 
245 1 0 |a Mathematics for Computer Graphics  |h [electronic resource] /  |c by John Vince. 
250 |a 3rd Edition. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 |a XV, 293 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
505 0 |a Mathematics -- Numbers -- Algebra -- Trigonometry -- Cartesian Coordinates -- Vectors -- Transforms -- Interpolation -- Curves and Patches -- Analytic Geometry -- Barycentric Coordinates -- Geometric Algebra -- Worked Examples -- Conclusion. 
520 |a John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD, and other areas of computer graphics. Covering all the mathematical techniques required to resolve geometric problems and design computer programs for computer graphic applications, each chapter explores a specific mathematical topic prior to moving forward into the more advanced areas of matrix transforms, 3D curves and surface patches. Problem-solving techniques using vector analysis and geometric algebra are also discussed. All the key areas are covered including: • Numbers • Algebra • Trigonometry • Coordinate geometry • Transforms • Vectors • Curves and surfaces • Barycentric coordinates • Analytic geometry. Plus – and unusually in a student textbook – a chapter on geometric algebra is included. With plenty of worked examples, the book provides a sound understanding of the mathematics required for computer graphics, giving a fascinating insight into the design of computer graphics software, and setting the scene for further reading of more advanced books and technical research papers. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer simulation. 
650 0 |a Computer graphics. 
650 1 4 |a Computer Science. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Computer Graphics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781849960229 
830 0 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84996-023-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)