Developing Multi-Database Mining Applications

Multi-database mining is recognized as an important and strategic area of research in data mining. The authors discuss the essential issues relating to the systematic and efficient development of multi-database mining applications, and present approaches to the development of data warehouses at diff...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Adhikari, Animesh (Συγγραφέας), Ramachandrarao, Pralhad (Συγγραφέας), Pedrycz, Witold (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2010.
Σειρά:Advanced Information and Knowledge Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03381nam a22005175i 4500
001 978-1-84996-044-1
003 DE-He213
005 20151204172654.0
007 cr nn 008mamaa
008 100623s2010 xxk| s |||| 0|eng d
020 |a 9781849960441  |9 978-1-84996-044-1 
024 7 |a 10.1007/978-1-84996-044-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Adhikari, Animesh.  |e author. 
245 1 0 |a Developing Multi-Database Mining Applications  |h [electronic resource] /  |c by Animesh Adhikari, Pralhad Ramachandrarao, Witold Pedrycz. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 |a X, 130 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
505 0 |a An Extended Model of Local Pattern Analysis -- Mining Multiple Large Databases -- Mining Patterns of Select Items in Multiple Databases -- Enhancing Quality of Knowledge Synthesized from Multi-database Mining -- Efficient Clustering of Databases Induced by Local Patterns -- A Framework for Developing Effective Multi-database Mining Applications. 
520 |a Multi-database mining is recognized as an important and strategic area of research in data mining. The authors discuss the essential issues relating to the systematic and efficient development of multi-database mining applications, and present approaches to the development of data warehouses at different branches, demonstrating how carefully selected multi-database mining techniques contribute to successful real-world applications. In showing and quantifying how the efficiency of a multi-database mining application can be improved by processing more patterns, the book also covers other essential design aspects. These are carefully investigated and include a determination of an appropriate multi-database mining model, how to select relevant databases, choosing an appropriate pattern synthesizing technique, representing pattern space, and constructing an efficient algorithm. The authors illustrate each of these development issues either in the context of a specific problem at hand, or via some general settings. Developing Multi-Database Mining Applications will be welcomed by practitioners, researchers and students working in the area of data mining and knowledge discovery. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer Science, general. 
650 2 4 |a Information Systems Applications (incl. Internet). 
700 1 |a Ramachandrarao, Pralhad.  |e author. 
700 1 |a Pedrycz, Witold.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781849960434 
830 0 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84996-044-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)