Automotive Model Predictive Control Models, Methods and Applications /

Automotive control has developed over the decades from an auxiliary te- nology to a key element without which the actual performances, emission, safety and consumption targets could not be met. Accordingly, automotive control has been increasing its authority and responsibility – at the price of com...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Re, Luigi del (Επιμελητής έκδοσης), Allgöwer, Frank (Επιμελητής έκδοσης), Glielmo, Luigi (Επιμελητής έκδοσης), Guardiola, Carlos (Επιμελητής έκδοσης), Kolmanovsky, Ilya (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2010.
Σειρά:Lecture Notes in Control and Information Sciences, 402
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04632nam a22005055i 4500
001 978-1-84996-071-7
003 DE-He213
005 20151125192418.0
007 cr nn 008mamaa
008 100311s2010 xxk| s |||| 0|eng d
020 |a 9781849960717  |9 978-1-84996-071-7 
024 7 |a 10.1007/978-1-84996-071-7  |2 doi 
040 |d GrThAP 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
245 1 0 |a Automotive Model Predictive Control  |h [electronic resource] :  |b Models, Methods and Applications /  |c edited by Luigi del Re, Frank Allgöwer, Luigi Glielmo, Carlos Guardiola, Ilya Kolmanovsky. 
264 1 |a London :  |b Springer London,  |c 2010. 
300 |a XIV, 290 p. 152 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 402 
505 0 |a Chances and Challenges in Automotive Predictive Control -- Chances and Challenges in Automotive Predictive Control -- I: Models -- On Board NOx Prediction in Diesel Engines: A Physical Approach -- Mean Value Engine Models Applied to Control System Design and Validation -- Physical Modeling of Turbocharged Engines and Parameter Identification -- Dynamic Engine Emission Models -- Modeling and Model-based Control of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics -- II: Methods -- An Overview of Nonlinear Model Predictive Control -- Optimal Control Using Pontryagin’s Maximum Principle and Dynamic Programming -- On the Use of Parameterized NMPC in Real-time Automotive Control -- III: Applications -- An Application of MPC Starting Automotive Spark Ignition Engine in SICE Benchmark Problem -- Model Predictive Control of Partially Premixed Combustion -- Model Predictive Powertrain Control: An Application to Idle Speed Regulation -- On Low Complexity Predictive Approaches to Control of Autonomous Vehicles -- Toward a Systematic Design for Turbocharged Engine Control -- An Integrated LTV-MPC Lateral Vehicle Dynamics Control: Simulation Results -- MIMO Model Predictive Control for Integral Gas Engines -- A Model Predictive Control Approach to Design a Parameterized Adaptive Cruise Control. 
520 |a Automotive control has developed over the decades from an auxiliary te- nology to a key element without which the actual performances, emission, safety and consumption targets could not be met. Accordingly, automotive control has been increasing its authority and responsibility – at the price of complexity and di?cult tuning. The progressive evolution has been mainly ledby speci?capplicationsandshorttermtargets,withthe consequencethat automotive control is to a very large extent more heuristic than systematic. Product requirements are still increasing and new challenges are coming from potentially huge markets like India and China, and against this ba- ground there is wide consensus both in the industry and academia that the current state is not satisfactory. Model-based control could be an approach to improve performance while reducing development and tuning times and possibly costs. Model predictive control is a kind of model-based control design approach which has experienced a growing success since the middle of the 1980s for “slow” complex plants, in particular of the chemical and process industry. In the last decades, severaldevelopments haveallowedusing these methods also for “fast”systemsandthis hassupporteda growinginterestinitsusealsofor automotive applications, with several promising results reported. Still there is no consensus on whether model predictive control with its high requi- ments on model quality and on computational power is a sensible choice for automotive control. 
650 0 |a Engineering. 
650 0 |a Automotive engineering. 
650 0 |a Control engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
650 2 4 |a Automotive Engineering. 
700 1 |a Re, Luigi del.  |e editor. 
700 1 |a Allgöwer, Frank.  |e editor. 
700 1 |a Glielmo, Luigi.  |e editor. 
700 1 |a Guardiola, Carlos.  |e editor. 
700 1 |a Kolmanovsky, Ilya.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781849960700 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 402 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84996-071-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)