Bayesian Inference for Probabilistic Risk Assessment A Practitioner's Guidebook /

Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kelly, Dana (Συγγραφέας), Smith, Curtis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:Springer Series in Reliability Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03821nam a22005175i 4500
001 978-1-84996-187-5
003 DE-He213
005 20151103123430.0
007 cr nn 008mamaa
008 110829s2011 xxk| s |||| 0|eng d
020 |a 9781849961875  |9 978-1-84996-187-5 
024 7 |a 10.1007/978-1-84996-187-5  |2 doi 
040 |d GrThAP 
050 4 |a TA169.7 
050 4 |a T55-T55.3 
050 4 |a TA403.6 
072 7 |a TGPR  |2 bicssc 
072 7 |a TEC032000  |2 bisacsh 
082 0 4 |a 658.56  |2 23 
100 1 |a Kelly, Dana.  |e author. 
245 1 0 |a Bayesian Inference for Probabilistic Risk Assessment  |h [electronic resource] :  |b A Practitioner's Guidebook /  |c by Dana Kelly, Curtis Smith. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a XII, 228 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Reliability Engineering,  |x 1614-7839 
505 0 |a 1. Introduction and Motivation -- 2. Introduction to Bayesian Inference -- 3. Bayesian Inference for Common Aleatory Models -- 4. Bayesian Model Checking -- 5. Time Trends for Binomial and Poisson Data -- 6. Checking Convergence to Posterior Distribution -- 7. Hierarchical Bayes Models for Variability -- 8. More Complex Models for Random Durations -- 9. Modeling Failure with Repair -- 10. Bayesian Treatment of Uncertain Data -- 11. Bayesian Regression Models -- 12. Bayesian Inference for Multilevel Fault Tree Models -- 13. Additional Topics. 
520 |a Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis “building blocks” that can be modified, combined, or used as-is to solve a variety of challenging problems. The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking. Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. 
650 0 |a Engineering. 
650 0 |a Statistics. 
650 0 |a Quality control. 
650 0 |a Reliability. 
650 0 |a Industrial safety. 
650 1 4 |a Engineering. 
650 2 4 |a Quality Control, Reliability, Safety and Risk. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Smith, Curtis.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781849961868 
830 0 |a Springer Series in Reliability Engineering,  |x 1614-7839 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84996-187-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)