Bayesian Inference for Probabilistic Risk Assessment A Practitioner's Guidebook /
Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemen...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Springer London,
2011.
|
Σειρά: | Springer Series in Reliability Engineering,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Introduction and Motivation
- 2. Introduction to Bayesian Inference
- 3. Bayesian Inference for Common Aleatory Models
- 4. Bayesian Model Checking
- 5. Time Trends for Binomial and Poisson Data
- 6. Checking Convergence to Posterior Distribution
- 7. Hierarchical Bayes Models for Variability
- 8. More Complex Models for Random Durations
- 9. Modeling Failure with Repair
- 10. Bayesian Treatment of Uncertain Data
- 11. Bayesian Regression Models
- 12. Bayesian Inference for Multilevel Fault Tree Models
- 13. Additional Topics.