Bayesian Inference for Probabilistic Risk Assessment A Practitioner's Guidebook /

Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kelly, Dana (Συγγραφέας), Smith, Curtis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:Springer Series in Reliability Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Introduction and Motivation
  • 2. Introduction to Bayesian Inference
  • 3. Bayesian Inference for Common Aleatory Models
  • 4. Bayesian Model Checking
  • 5. Time Trends for Binomial and Poisson Data
  • 6. Checking Convergence to Posterior Distribution
  • 7. Hierarchical Bayes Models for Variability
  • 8. More Complex Models for Random Durations
  • 9. Modeling Failure with Repair
  • 10. Bayesian Treatment of Uncertain Data
  • 11. Bayesian Regression Models
  • 12. Bayesian Inference for Multilevel Fault Tree Models
  • 13. Additional Topics.