Computational Methods in Biometric Authentication Statistical Methods for Performance Evaluation /

Biometrics, the science of using physical traits to identify individuals, is playing an increasing role in our security-conscious society and across the globe. Biometric authentication, or bioauthentication, systems are being used to secure everything from amusement parks to bank accounts to militar...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schuckers, Michael E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2010.
Σειρά:Information Science and Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04641nam a22004935i 4500
001 978-1-84996-202-5
003 DE-He213
005 20151125191252.0
007 cr nn 008mamaa
008 100623s2010 xxk| s |||| 0|eng d
020 |a 9781849962025  |9 978-1-84996-202-5 
024 7 |a 10.1007/978-1-84996-202-5  |2 doi 
040 |d GrThAP 
050 4 |a QH323.5 
072 7 |a UYQP  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 570.15195  |2 23 
100 1 |a Schuckers, Michael E.  |e author. 
245 1 0 |a Computational Methods in Biometric Authentication  |h [electronic resource] :  |b Statistical Methods for Performance Evaluation /  |c by Michael E. Schuckers. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 |a XXV, 317 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Science and Statistics,  |x 1613-9011 
505 0 |a Statistical Background -- Primary Matching and Classification Measures -- False Non-Match Rate -- False Match Rate -- Receiver Operating Characteristic Curve and Equal Error Rate -- Biometric Specific Measures -- Failure to Enrol -- Failure to Acquire -- Additional Topics and Appendices -- Additional Topics and Discussion -- Tables. 
520 |a Biometrics, the science of using physical traits to identify individuals, is playing an increasing role in our security-conscious society and across the globe. Biometric authentication, or bioauthentication, systems are being used to secure everything from amusement parks to bank accounts to military installations. Yet developments in this field have not been matched by an equivalent improvement in the statistical methods for evaluating these systems. Compensating for this need, this unique text/reference provides a basic statistical methodology for practitioners and testers of bioauthentication devices, supplying a set of rigorous statistical methods for evaluating biometric authentication systems. This framework of methods can be extended and generalized for a wide range of applications and tests. This is the first single resource on statistical methods for estimation and comparison of the performance of biometric authentication systems. The book focuses on six common performance metrics: for each metric, statistical methods are derived for a single system that incorporates confidence intervals, hypothesis tests, sample size calculations, power calculations and prediction intervals. These methods are also extended to allow for the statistical comparison and evaluation of multiple systems for both independent and paired data. Topics and features: Provides a statistical methodology for the most common biometric performance metrics: failure to enroll (FTE), failure to acquire (FTA), false non-match rate (FNMR), false match rate (FMR), and receiver operating characteristic (ROC) curves Presents methods for the comparison of two or more biometric performance metrics Introduces a new bootstrap methodology for FMR and ROC curve estimation Supplies more than 120 examples, using publicly available biometric data where possible Discusses the addition of prediction intervals to the bioauthentication statistical toolset Describes sample-size and power calculations for FTE, FTA, FNMR and FMR Researchers, managers and decisions makers needing to compare biometric systems across a variety of metrics will find within this reference an invaluable set of statistical tools. Written for an upper-level undergraduate or master's level audience with a quantitative background, readers are also expected to have an understanding of the topics in a typical undergraduate statistics course. Dr. Michael E. Schuckers is Associate Professor of Statistics at St. Lawrence University, Canton, NY, and a member of the Center for Identification Technology Research. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Biometrics (Biology). 
650 0 |a Computer mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Biometrics. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781849962018 
830 0 |a Information Science and Statistics,  |x 1613-9011 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84996-202-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)