Core Data Analysis: Summarization, Correlation, and Visualization

This text examines the goals of data analysis with respect to enhancing knowledge, and identifies data summarization and correlation analysis as the core issues. Data summarization, both quantitative and categorical, is treated within the encoder-decoder paradigm bringing forward a number of mathema...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mirkin, Boris (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:2nd ed. 2019.
Σειρά:Undergraduate Topics in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04097nam a2200517 4500
001 978-3-030-00271-8
003 DE-He213
005 20191025162017.0
007 cr nn 008mamaa
008 190415s2019 gw | s |||| 0|eng d
020 |a 9783030002718  |9 978-3-030-00271-8 
024 7 |a 10.1007/978-3-030-00271-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D35 
072 7 |a UMB  |2 bicssc 
072 7 |a COM062000  |2 bisacsh 
072 7 |a UMB  |2 thema 
082 0 4 |a 005.73  |2 23 
100 1 |a Mirkin, Boris.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Core Data Analysis: Summarization, Correlation, and Visualization  |h [electronic resource] /  |c by Boris Mirkin. 
250 |a 2nd ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XV, 524 p. 187 illus., 80 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
505 0 |a Topics in Data Analysis Substance -- Quantitative Summarization -- Learning Correlations -- Core Partitioning: K-Means and Similarity Clustering -- Divisive and Separate Cluster Structures -- Appendix. Basic Math and Code -- Index. 
520 |a This text examines the goals of data analysis with respect to enhancing knowledge, and identifies data summarization and correlation analysis as the core issues. Data summarization, both quantitative and categorical, is treated within the encoder-decoder paradigm bringing forward a number of mathematically supported insights into the methods and relations between them. Two Chapters describe methods for categorical summarization: partitioning, divisive clustering and separate cluster finding and another explain the methods for quantitative summarization, Principal Component Analysis and PageRank. Features: · An in-depth presentation of K-means partitioning including a corresponding Pythagorean decomposition of the data scatter. · Advice regarding such issues as clustering of categorical and mixed scale data, similarity and network data, interpretation aids, anomalous clusters, the number of clusters, etc. · Thorough attention to data-driven modelling including a number of mathematically stated relations between statistical and geometrical concepts including those between goodness-of-fit criteria for decision trees and data standardization, similarity and consensus clustering, modularity clustering and uniform partitioning. New edition highlights: · Inclusion of ranking issues such as Google PageRank, linear stratification and tied rankings median, consensus clustering, semi-average clustering, one-cluster clustering · Restructured to make the logics more straightforward and sections self-contained Core Data Analysis: Summarization, Correlation and Visualization is aimed at those who are eager to participate in developing the field as well as appealing to novices and practitioners. . 
650 0 |a Data structures (Computer science). 
650 0 |a Computer security. 
650 0 |a Data mining. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Data Structures.  |0 http://scigraph.springernature.com/things/product-market-codes/I15017 
650 2 4 |a Systems and Data Security.  |0 http://scigraph.springernature.com/things/product-market-codes/I28060 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Math Applications in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17044 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030002701 
776 0 8 |i Printed edition:  |z 9783030002725 
830 0 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
856 4 0 |u https://doi.org/10.1007/978-3-030-00271-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)