Real Spinorial Groups A Short Mathematical Introduction /

This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Xambó-Descamps, Sebastià (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03172nam a2200493 4500
001 978-3-030-00404-0
003 DE-He213
005 20191023162305.0
007 cr nn 008mamaa
008 181122s2018 gw | s |||| 0|eng d
020 |a 9783030004040  |9 978-3-030-00404-0 
024 7 |a 10.1007/978-3-030-00404-0  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Xambó-Descamps, Sebastià.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Real Spinorial Groups  |h [electronic resource] :  |b A Short Mathematical Introduction /  |c by Sebastià Xambó-Descamps. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 151 p. 11 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Chapter 1- Mathematical background -- Chapter 2- Grassmann algebra -- Chapter 3- Geometric Algebra -- Chapter 4- Orthogonal geometry with GA -- Chapter 5- Zooming in on rotor groups -- Chapter 6- Postfaces -- References. 
520 |a This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index. Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students. 
650 0 |a Geometry. 
650 0 |a Group theory. 
650 0 |a Physics. 
650 1 4 |a Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21006 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030004033 
776 0 8 |i Printed edition:  |z 9783030004057 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://doi.org/10.1007/978-3-030-00404-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)