Singular Perturbations and Boundary Layers

Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gie, Gung-Min (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Hamouda, Makram (http://id.loc.gov/vocabulary/relators/aut), Jung, Chang-Yeol (http://id.loc.gov/vocabulary/relators/aut), Temam, Roger M. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Applied Mathematical Sciences, 200
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 01- Singular perturbations in dimension one
  • Chapter 2- Singular perturbations in higher dimensions in a channel
  • Chapter 3- Boundary layers in a curved domain in Rd, d = 2;3
  • Chapter 4- Corner layers and turning points for convection-diffusion equations
  • Chapter 5- Convection-diffusion equations in a circular domain with characteristic point layers
  • Chapter 6- The Navier-Stokes equations in a periodic channel
  • Chapter 7- The Navier-Stokes equations in a curved domain
  • Appendix
  • References.