An Introduction to the Language of Mathematics

This is a textbook for an undergraduate mathematics major transition course from technique-based mathematics (such as Algebra and Calculus) to proof-based mathematics. It motivates the introduction of the formal language of logic and set theory and develops the basics with examples, exercises with s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mynard, Frédéric (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02693nam a2200421 4500
001 978-3-030-00641-9
003 DE-He213
005 20190619201627.0
007 cr nn 008mamaa
008 181124s2018 gw | s |||| 0|eng d
020 |a 9783030006419  |9 978-3-030-00641-9 
024 7 |a 10.1007/978-3-030-00641-9  |2 doi 
040 |d GrThAP 
050 4 |a QA9.54 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBCD  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Mynard, Frédéric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to the Language of Mathematics  |h [electronic resource] /  |c by Frédéric Mynard. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XII, 185 p. 34 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1- The language of logic and set-theory -- Chapter 2- On proofs and writing mathematics -- Chapter 3- Relations -- Chapter 4- Cardinality -- Appendix A- Complements -- Appendix B- Solutions to exercises in the text -- Index -- Bibliography. 
520 |a This is a textbook for an undergraduate mathematics major transition course from technique-based mathematics (such as Algebra and Calculus) to proof-based mathematics. It motivates the introduction of the formal language of logic and set theory and develops the basics with examples, exercises with solutions and exercises without. It then moves to a discussion of proof structure and basic proof techniques, including proofs by induction with extensive examples. An in-depth treatment of relations, particularly equivalence and order relations completes the exposition of the basic language of mathematics. The last chapter treats infinite cardinalities. An appendix gives some complement on induction and order, and another provides full solutions of the in-text exercises. The primary audience is undergraduate mathematics major, but independent readers interested in mathematics can also use the book for self-study. 
650 0 |a Proof theory. 
650 1 4 |a Structures and Proofs.  |0 http://scigraph.springernature.com/things/product-market-codes/M24010 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030006402 
776 0 8 |i Printed edition:  |z 9783030006426 
856 4 0 |u https://doi.org/10.1007/978-3-030-00641-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)