Deep Learning and Missing Data in Engineering Systems

Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputa...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Leke, Collins Achepsah (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Marwala, Tshilidzi (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Studies in Big Data, 48
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04196nam a2200505 4500
001 978-3-030-01180-2
003 DE-He213
005 20191022042654.0
007 cr nn 008mamaa
008 181213s2019 gw | s |||| 0|eng d
020 |a 9783030011802  |9 978-3-030-01180-2 
024 7 |a 10.1007/978-3-030-01180-2  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Leke, Collins Achepsah.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Deep Learning and Missing Data in Engineering Systems  |h [electronic resource] /  |c by Collins Achepsah Leke, Tshilidzi Marwala. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIV, 179 p. 109 illus., 84 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 48 
505 0 |a Introduction to Missing Data Estimation -- Introduction to Deep Learning -- Missing Data Estimation Using Bat Algorithm -- Missing Data Estimation Using Cuckoo Search Algorithm -- Missing Data Estimation Using Firefly Algorithm -- Missing Data Estimation Using Ant Colony Optimization Algorithm -- Missing Data Estimation Using Ant-Lion Optimizer Algorithm -- Missing Data Estimation Using Invasive Weed Optimization Algorithm -- Missing Data Estimation Using Swarm Intelligence Algorithms from Reduced Dimensions -- Missing Data Estimation Using Swarm Intelligence Algorithms: Deep Learning Framework Analysis -- Conclusion. 
520 |a Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including: deep autoencoder neural networks; deep denoising autoencoder networks; the bat algorithm; the cuckoo search algorithm; and the firefly algorithm. The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix. This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation. 
650 0 |a Computational intelligence. 
650 0 |a Big data. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a Marwala, Tshilidzi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030011796 
776 0 8 |i Printed edition:  |z 9783030011819 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 48 
856 4 0 |u https://doi.org/10.1007/978-3-030-01180-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)