Zeta Integrals, Schwartz Spaces and Local Functional Equations

This book focuses on a conjectural class of zeta integrals which arose from a program born in the work of Braverman and Kazhdan around the year 2000, the eventual goal being to prove the analytic continuation and functional equation of automorphic L-functions. Developing a general framework that cou...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Li, Wen-Wei (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Lecture Notes in Mathematics, 2228
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03134nam a2200541 4500
001 978-3-030-01288-5
003 DE-He213
005 20191026081436.0
007 cr nn 008mamaa
008 181102s2018 gw | s |||| 0|eng d
020 |a 9783030012885  |9 978-3-030-01288-5 
024 7 |a 10.1007/978-3-030-01288-5  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Li, Wen-Wei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Zeta Integrals, Schwartz Spaces and Local Functional Equations  |h [electronic resource] /  |c by Wen-Wei Li. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a VIII, 141 p. 30 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2228 
505 0 |a Introduction -- Geometric Background -- Analytic Background -- Schwartz Spaces and Zeta Integrals -- Convergence of Some Zeta Integrals -- Prehomogeneous Vector Spaces -- The Doubling Method -- Speculation on the Global Integrals. 
520 |a This book focuses on a conjectural class of zeta integrals which arose from a program born in the work of Braverman and Kazhdan around the year 2000, the eventual goal being to prove the analytic continuation and functional equation of automorphic L-functions. Developing a general framework that could accommodate Schwartz spaces and the corresponding zeta integrals, the author establishes a formalism, states desiderata and conjectures, draws implications from these assumptions, and shows how known examples fit into this framework, supporting Sakellaridis' vision of the subject. The collected results, both old and new, and the included extensive bibliography, will be valuable to anyone who wishes to understand this program, and to those who are already working on it and want to overcome certain frequently occurring technical difficulties. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Harmonic analysis. 
650 0 |a Number theory. 
650 1 4 |a Topological Groups, Lie Groups.  |0 http://scigraph.springernature.com/things/product-market-codes/M11132 
650 2 4 |a Abstract Harmonic Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12015 
650 2 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030012878 
776 0 8 |i Printed edition:  |z 9783030012892 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2228 
856 4 0 |u https://doi.org/10.1007/978-3-030-01288-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)