Discrete Mechanics, Geometric Integration and Lie-Butcher Series DMGILBS, Madrid, May 2015 /

This volume resulted from presentations given at the international "Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series", that took place at the Instituto de Ciencias Matemáticas (ICMAT) in Madrid, Spain. It combines overview and...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Ebrahimi-Fard, Kurusch (Editor, http://id.loc.gov/vocabulary/relators/edt), Barbero Liñán, María (Editor, http://id.loc.gov/vocabulary/relators/edt)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2018.
Edition:1st ed. 2018.
Series:Springer Proceedings in Mathematics & Statistics, 267
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 05059nam a2200589 4500
001 978-3-030-01397-4
003 DE-He213
005 20191025201943.0
007 cr nn 008mamaa
008 181104s2018 gw | s |||| 0|eng d
020 |a 9783030013974  |9 978-3-030-01397-4 
024 7 |a 10.1007/978-3-030-01397-4  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
245 1 0 |a Discrete Mechanics, Geometric Integration and Lie-Butcher Series  |h [electronic resource] :  |b DMGILBS, Madrid, May 2015 /  |c edited by Kurusch Ebrahimi-Fard, María Barbero Liñán. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 361 p. 169 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 267 
505 0 |a Preface -- A. Iserles and G.R.W. Quispel, Why geometric numerical integration? -- B. Owren, Lie group integrators -- H. Z. Munthe-Kaas and K. K. Føllesdal, Lie-Butcher series, Geometry, Algebra and Computation -- A. Murua and J. M. Sanz-Serna, Averaging and computing normal forms with word series algorithms -- L. A. Duffaut Espinosa, K. Ebrahimi-Fard, and W. Steven Gray, Combinatorial Hopf algebras for interconnected nonlinear input-output systems with a view towards discretization -- F. Casas, Computational aspects of some exponential identities -- K. Ebrahimi-Fard and I. Mencattini, Post-Lie Algebras, Factorization Theorems and Isospectral Flows -- G. Bogfjellmo, R. Dahmen, and A.Schmeding, Overview of (pro-)Lie group structures on Hopf algebra character groups, -- M. Barbero Liñán and D. Martín de Diego, Bäcklund transformations in discrete variational principles for Lie-Poisson equations -- M. Vermeeren, Numerical precession in variational discretizations of the Kepler problem -- O. Verdier, Full affine equivariance and weak natural transformations in numerical analysis - the case of B-Series -- References. . 
520 |a This volume resulted from presentations given at the international "Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series", that took place at the Instituto de Ciencias Matemáticas (ICMAT) in Madrid, Spain. It combines overview and research articles on recent and ongoing developments, as well as new research directions. Why geometric numerical integration? In their article of the same title Arieh Iserles and Reinout Quispel, two renowned experts in numerical analysis of differential equations, provide a compelling answer to this question. After this introductory chapter a collection of high-quality research articles aim at exploring recent and ongoing developments, as well as new research directions in the areas of geometric integration methods for differential equations, nonlinear systems interconnections, and discrete mechanics. One of the highlights is the unfolding of modern algebraic and combinatorial structures common to those topics, which give rise to fruitful interactions between theoretical as well as applied and computational perspectives. The volume is aimed at researchers and graduate students interested in theoretical and computational problems in geometric integration theory, nonlinear control theory, and discrete mechanics. . 
650 0 |a Numerical analysis. 
650 0 |a Differential geometry. 
650 0 |a System theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 1 4 |a Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M14050 
650 2 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Systems Theory, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/M13070 
650 2 4 |a Topological Groups, Lie Groups.  |0 http://scigraph.springernature.com/things/product-market-codes/M11132 
650 2 4 |a Non-associative Rings and Algebras.  |0 http://scigraph.springernature.com/things/product-market-codes/M11116 
700 1 |a Ebrahimi-Fard, Kurusch.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Barbero Liñán, María.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030013967 
776 0 8 |i Printed edition:  |z 9783030013981 
776 0 8 |i Printed edition:  |z 9783030131777 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 267 
856 4 0 |u https://doi.org/10.1007/978-3-030-01397-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)