Cubic Fields with Geometry

The objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophantine equations that are similar in many ways to the Pell equ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hambleton, Samuel A. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Williams, Hugh C. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 1- Cubic fields
  • Chapter 2- Cubic ideals and lattices
  • Chapter 3- Binary cubic forms
  • Chapter 4- Construction of all cubic fields of a fixed fundamental discriminant (Renate Scheidler)
  • Chapter 5- Cubic Pell equations
  • Chapter 6- The minima of forms and units by approximation
  • Chapter 7- Voronoi's theory of continued fractions
  • Chapter 8- Relative minima adjacent to 1 in a reduced lattice
  • Chapter 9- Parametrization of norm 1 elements of K
  • Tables and References
  • Author Index
  • Symbol Index
  • General Index.