Cubic Fields with Geometry
The objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophantine equations that are similar in many ways to the Pell equ...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Chapter 1- Cubic fields
- Chapter 2- Cubic ideals and lattices
- Chapter 3- Binary cubic forms
- Chapter 4- Construction of all cubic fields of a fixed fundamental discriminant (Renate Scheidler)
- Chapter 5- Cubic Pell equations
- Chapter 6- The minima of forms and units by approximation
- Chapter 7- Voronoi's theory of continued fractions
- Chapter 8- Relative minima adjacent to 1 in a reduced lattice
- Chapter 9- Parametrization of norm 1 elements of K
- Tables and References
- Author Index
- Symbol Index
- General Index.