Geometric Multiplication of Vectors An Introduction to Geometric Algebra in Physics /

This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension wit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Josipović, Miroslav (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Compact Textbooks in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03817nam a2200505 4500
001 978-3-030-01756-9
003 DE-He213
005 20191122215852.0
007 cr nn 008mamaa
008 191122s2019 gw | s |||| 0|eng d
020 |a 9783030017569  |9 978-3-030-01756-9 
024 7 |a 10.1007/978-3-030-01756-9  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.5  |2 23 
100 1 |a Josipović, Miroslav.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Multiplication of Vectors  |h [electronic resource] :  |b An Introduction to Geometric Algebra in Physics /  |c by Miroslav Josipović. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2019. 
300 |a XXV, 241 p. 89 illus., 88 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Compact Textbooks in Mathematics,  |x 2296-4568 
505 0 |a Basic Concepts -- Euclidean 3D Geometric Algebra -- Applications -- Geometric Algebra and Matrices -- Appendix -- Solutions for Some Problems -- Problems -- Why Geometric Algebra? -- Formulae -- Literature -- References. 
520 |a This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Quantum physics. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Linear and Multilinear Algebras, Matrix Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11094 
650 2 4 |a Quantum Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19080 
650 2 4 |a Math Applications in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17044 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030017552 
776 0 8 |i Printed edition:  |z 9783030017576 
830 0 |a Compact Textbooks in Mathematics,  |x 2296-4568 
856 4 0 |u https://doi.org/10.1007/978-3-030-01756-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)