Linking and Mining Heterogeneous and Multi-view Data

This book highlights research in linking and mining data from across varied data sources. The authors focus on recent advances in this burgeoning field of multi-source data fusion, with an emphasis on exploratory and unsupervised data analysis, an area of increasing significance with the pace of gro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: P, Deepak (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Jurek-Loughrey, Anna (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Unsupervised and Semi-Supervised Learning,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04841nam a2200577 4500
001 978-3-030-01872-6
003 DE-He213
005 20191220130322.0
007 cr nn 008mamaa
008 181213s2019 gw | s |||| 0|eng d
020 |a 9783030018726  |9 978-3-030-01872-6 
024 7 |a 10.1007/978-3-030-01872-6  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Linking and Mining Heterogeneous and Multi-view Data  |h [electronic resource] /  |c edited by Deepak P, Anna Jurek-Loughrey. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 343 p. 66 illus., 52 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Unsupervised and Semi-Supervised Learning,  |x 2522-848X 
505 0 |a Chapter 1. Multi-view Data Completion -- Chapter 2. Multi-view Clustering -- Chapter 3. Semi-supervised and Unsupervised Approaches to Record Pairs Classification in Multi-source Data Linkage -- Chapter 4. A Review of Unsupervised and Semi-Supervised Blocking Methods for Record Linkage -- Chapter 5. Traffic Sensing & Assessing in Digital Transportation Systems -- Chapter 6. How did the discussion go: Discourse act classification in social media conversations -- Chapter 7. Entity Linking in Enterprise Search: Combining Textual and Structural Information -- Chapter 8. Clustering Multi-view Data Using Non-negative Matrix Factorization and Manifold Learning for Effective Understanding: A Survey Paper -- Chapter 9. Leveraging Heterogeneous Data for Fake News Detection -- Chapter 10. On the Evaluation of Community Detection Algorithms on Heterogeneous Social Media Data -- Chapter 11. General Framework for Multi-View Metric Learning -- Chapter 12. Learning from imbalanced datasets with cross-view cooperation-based ensemble methods. 
520 |a This book highlights research in linking and mining data from across varied data sources. The authors focus on recent advances in this burgeoning field of multi-source data fusion, with an emphasis on exploratory and unsupervised data analysis, an area of increasing significance with the pace of growth of data vastly outpacing any chance of labeling them manually. The book looks at the underlying algorithms and technologies that facilitate the area within big data analytics, it covers their applications across domains such as smarter transportation, social media, fake news detection and enterprise search among others. This book enables readers to understand a spectrum of advances in this emerging area, and it will hopefully empower them to leverage and develop methods in multi-source data fusion and analytics with applications to a variety of scenarios. Includes advances on unsupervised, semi-supervised and supervised approaches to heterogeneous data linkage and fusion; Covers use cases of analytics over multi-view and heterogeneous data from across a variety of domains such as fake news, smarter transportation and social media, among others; Provides a high-level overview of advances in this emerging field and empowers the reader to explore novel applications and methodologies that would enrich the field. . 
650 0 |a Electrical engineering. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Pattern recognition. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 1 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
700 1 |a P, Deepak.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Jurek-Loughrey, Anna.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030018719 
776 0 8 |i Printed edition:  |z 9783030018733 
830 0 |a Unsupervised and Semi-Supervised Learning,  |x 2522-848X 
856 4 0 |u https://doi.org/10.1007/978-3-030-01872-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)