Advances in Heart Valve Biomechanics Valvular Physiology, Mechanobiology, and Bioengineering /

This book covers the latest research development in heart valve biomechanics and bioengineering, with an emphasis on novel experimentation, computational simulation, and applications in heart valve bioengineering. The most current research accomplishments are covered in detail, including novel conce...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Sacks, Michael S. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Liao, Jun (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Biological Mechanics of the Heart Valve Interstitial Cell
  • Endothelial Mechanotransduction
  • The Role of Proteoglycans and Glycosaminoglycans in Heart Valve Biomechanics
  • On the Unique Functional Elasticity and Collagen Fiber kinematics of Heart Valve Leaflets
  • Tricuspid Valve Biomechanics: A Brief Review
  • Measurement Technologies for Heart Valve Function
  • Calcific Aortic Valve Disease: Pathobiology, Basic Mechanisms, and Clinical Strategies
  • Remodeling Potential of the Mitral Heart Valve Leaflet
  • Molecular and Cellular Developments in Heart Valve Development and Disease
  • Mechanical Mediation of Signaling Pathways in Heart Valve Development and Disease
  • Tissue Engineered Heart Valves
  • Decellularization in Heart Valve Tissue Engineering
  • Novel Bioreactors for Mechanistic Studies of Engineered Heart Valves
  • Bioprosthetic Heart Valves: From a Biomaterials Perspective
  • Computational Modeling of Heart Valves: Understanding and Predicting Disease
  • Biomechanics and Modeling of Tissue-Engineered Heart Valves
  • Fluid-structure interaction analysis of bioprosthetic heart valves: the application of a computationally-efficient tissue constitutive model
  • Towards Patient-Specific Mitral Valve Surgical Simulations.