Mobile Data Mining

This SpringerBrief presents a typical life-cycle of mobile data mining applications, including: data capturing and processing which determines what data to collect, how to collect these data, and how to reduce the noise in the data based on smartphone sensors feature engineering which extracts and s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yao, Yuan (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Su, Xing (http://id.loc.gov/vocabulary/relators/aut), Tong, Hanghang (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03734nam a2200493 4500
001 978-3-030-02101-6
003 DE-He213
005 20191025231509.0
007 cr nn 008mamaa
008 181031s2018 gw | s |||| 0|eng d
020 |a 9783030021016  |9 978-3-030-02101-6 
024 7 |a 10.1007/978-3-030-02101-6  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UT  |2 bicssc 
072 7 |a COM069000  |2 bisacsh 
072 7 |a UT  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Yao, Yuan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mobile Data Mining  |h [electronic resource] /  |c by Yuan Yao, Xing Su, Hanghang Tong. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a IX, 58 p. 22 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a 1 Introduction -- 2 Data Capturing and Processing -- 3 Feature Engineering -- 4 Hierarchical Model -- 5 Personalized Model -- 6 Online Model -- 7 Conclusions. 
520 |a This SpringerBrief presents a typical life-cycle of mobile data mining applications, including: data capturing and processing which determines what data to collect, how to collect these data, and how to reduce the noise in the data based on smartphone sensors feature engineering which extracts and selects features to serve as the input of algorithms based on the collected and processed data model and algorithm design In particular, this brief concentrates on the model and algorithm design aspect, and explains three challenging requirements of mobile data mining applications: energy-saving, personalization, and real-time Energy saving is a fundamental requirement of mobile applications, due to the limited battery capacity of smartphones. The authors explore the existing practices in the methodology level (e.g. by designing hierarchical models) for saving energy. Another fundamental requirement of mobile applications is personalization. Most of the existing methods tend to train generic models for all users, but the authors provide existing personalized treatments for mobile applications, as the behaviors may differ greatly from one user to another in many mobile applications. The third requirement is real-time. That is, the mobile application should return responses in a real-time manner, meanwhile balancing effectiveness and efficiency. This SpringerBrief targets data mining and machine learning researchers and practitioners working in these related fields. Advanced level students studying computer science and electrical engineering will also find this brief useful as a study guide. . 
650 0 |a Computers. 
650 0 |a Computer communication systems. 
650 1 4 |a Information Systems and Communication Service.  |0 http://scigraph.springernature.com/things/product-market-codes/I18008 
650 2 4 |a Computer Communication Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/I13022 
700 1 |a Su, Xing.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Tong, Hanghang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030021009 
776 0 8 |i Printed edition:  |z 9783030021023 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u https://doi.org/10.1007/978-3-030-02101-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)