Hidden Dynamics The Mathematics of Switches, Decisions and Other Discontinuous Behaviour /

The dream of mathematical modeling is of systems evolving in a continuous, deterministic, predictable way. Unfortunately continuity is lost whenever the `rules of the game' change, whether a change of behavioural regime, or a change of physical properties. From biological mitosis to seizures. F...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jeffrey, Mike R. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04083nam a2200445 4500
001 978-3-030-02107-8
003 DE-He213
005 20191025111231.0
007 cr nn 008mamaa
008 181211s2018 gw | s |||| 0|eng d
020 |a 9783030021078  |9 978-3-030-02107-8 
024 7 |a 10.1007/978-3-030-02107-8  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Jeffrey, Mike R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hidden Dynamics  |h [electronic resource] :  |b The Mathematics of Switches, Decisions and Other Discontinuous Behaviour /  |c by Mike R. Jeffrey. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVIII, 521 p. 286 illus., 75 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Chapter Outline -- Chapter 1- Origins of Discontinuity -- Chapter 2- One switch in the Plane: A Primer -- Chapter 3- The Vector Field: Multipliers & Combinations -- Chapter 4- The Flow: Types of Solution -- Chapter 5- The Vector Field Canopy -- Chapter 6- Tangencies: The Shape of the Discontinuity Surface -- Chapter 7- Layer Analysis -- Chapter 8- Linear Switching (Local Theory) -- Chapter 9- Nonlinear Switching (Local Theory) -- Chapter 10- Breaking Determinacy -- Chapter11- Global Bifurcations & Explosions -- Chapter 12- Asymptotics of Switching: Smoothing & Other Perturbations -- Chapter 13- Four Obsessions of the Two-Fold Singularity -- Chapter 14- Applications from Physics, Biology, and Climate -- Appendix A- Discontinuity as an Asymptotic Phenomenon - Examples -- Appendix B- A Few Words from Filippov & Others, Moscow 1960 -- Exercises -- Bibliography -- Glossary. 
520 |a The dream of mathematical modeling is of systems evolving in a continuous, deterministic, predictable way. Unfortunately continuity is lost whenever the `rules of the game' change, whether a change of behavioural regime, or a change of physical properties. From biological mitosis to seizures. From rattling machine parts to earthquakes. From individual decisions to economic crashes. Where discontinuities occur, determinacy is inevitably lost. Typically the physical laws of such change are poorly understood, and too ill-defined for standard mathematics. Discontinuities offer a way to make the bounds of scientific knowledge a part of the model, to analyse a system with detail and rigour, yet still leave room for uncertainty. This is done without recourse to stochastic modeling, instead retaining determinacy as far as possible, and focussing on the geometry of the many outcomes that become possible when it breaks down. In this book the foundations of `piecewise-smooth dynamics' theory are rejuvenated, given new life through the lens of modern nonlinear dynamics and asymptotics. Numerous examples and exercises lead the reader through from basic to advanced analytical methods, particularly new tools for studying stability and bifurcations. The book is aimed at scientists and engineers from any background with a basic grounding in calculus and linear algebra. It seeks to provide an invaluable resource for modeling discontinuous systems, but also to empower the reader to develop their own novel models and discover as yet unknown phenomena. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Dynamical Systems and Ergodic Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M1204X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030021061 
776 0 8 |i Printed edition:  |z 9783030021085 
856 4 0 |u https://doi.org/10.1007/978-3-030-02107-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)