Shrinkage Estimation

This book provides a coherent framework for understanding shrinkage estimation in statistics. The term refers to modifying a classical estimator by moving it closer to a target which could be known a priori or arise from a model. The goal is to construct estimators with improved statistical properti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fourdrinier, Dominique (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Strawderman, William E. (http://id.loc.gov/vocabulary/relators/aut), Wells, Martin T. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04251nam a2200481 4500
001 978-3-030-02185-6
003 DE-He213
005 20191023111450.0
007 cr nn 008mamaa
008 181127s2018 gw | s |||| 0|eng d
020 |a 9783030021856  |9 978-3-030-02185-6 
024 7 |a 10.1007/978-3-030-02185-6  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Fourdrinier, Dominique.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Shrinkage Estimation  |h [electronic resource] /  |c by Dominique Fourdrinier, William E. Strawderman, Martin T. Wells. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 333 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Chapter 1. Decision Theory Preliminaries -- Chapter 2. Estimation of a normal mean vector I -- Chapter 3. Estimation of a normal mean vector II -- Chapter 4. Spherically symmetric distributions -- Chapter 5. Estimation of a mean vector for spherically symmetric distributions I: known scale -- Chapter 6. Estimation of a mean vector for spherically symmetric distributions II: with a residual -- Chapter 7. Restricted Parameter Spaces -- Chapter 8. Loss and Confidence Level Estimation.-. 
520 |a This book provides a coherent framework for understanding shrinkage estimation in statistics. The term refers to modifying a classical estimator by moving it closer to a target which could be known a priori or arise from a model. The goal is to construct estimators with improved statistical properties. The book focuses primarily on point and loss estimation of the mean vector of multivariate normal and spherically symmetric distributions. Chapter 1 reviews the statistical and decision theoretic terminology and results that will be used throughout the book. Chapter 2 is concerned with estimating the mean vector of a multivariate normal distribution under quadratic loss from a frequentist perspective. In Chapter 3 the authors take a Bayesian view of shrinkage estimation in the normal setting. Chapter 4 introduces the general classes of spherically and elliptically symmetric distributions. Point and loss estimation for these broad classes are studied in subsequent chapters. In particular, Chapter 5 extends many of the results from Chapters 2 and 3 to spherically and elliptically symmetric distributions. Chapter 6 considers the general linear model with spherically symmetric error distributions when a residual vector is available. Chapter 7 then considers the problem of estimating a location vector which is constrained to lie in a convex set. Much of the chapter is devoted to one of two types of constraint sets, balls and polyhedral cones. In Chapter 8 the authors focus on loss estimation and data-dependent evidence reports. Appendices cover a number of technical topics including weakly differentiable functions; examples where Stein's identity doesn't hold; Stein's lemma and Stokes' theorem for smooth boundaries; harmonic, superharmonic and subharmonic functions; and modified Bessel functions. 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Bayesian Inference.  |0 http://scigraph.springernature.com/things/product-market-codes/S18000 
700 1 |a Strawderman, William E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wells, Martin T.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030021849 
776 0 8 |i Printed edition:  |z 9783030021863 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u https://doi.org/10.1007/978-3-030-02185-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)