Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices Physical Interpretation and Applications /

This thesis introduces the spectral approach to transport problems in infinite disordered systems characterized by Anderson-type Hamiltonians. The spectral approach determines (with probability one) the existence of extended states for nonzero disorder in infinite lattices of any dimension and geome...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kostadinova, Evdokiya Georgieva (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04534nam a2200565 4500
001 978-3-030-02212-9
003 DE-He213
005 20191023112349.0
007 cr nn 008mamaa
008 181211s2018 gw | s |||| 0|eng d
020 |a 9783030022129  |9 978-3-030-02212-9 
024 7 |a 10.1007/978-3-030-02212-9  |2 doi 
040 |d GrThAP 
050 4 |a QC173.45-173.458 
072 7 |a PHF  |2 bicssc 
072 7 |a SCI077000  |2 bisacsh 
072 7 |a PHF  |2 thema 
082 0 4 |a 530.41  |2 23 
100 1 |a Kostadinova, Evdokiya Georgieva.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices  |h [electronic resource] :  |b Physical Interpretation and Applications /  |c by Evdokiya Georgieva Kostadinova. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 107 p. 39 illus., 36 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Chapter1. Introduction -- Chapter2. Theoretical Background -- Chapter3. Spectral Approach -- Chapter4. Delocalization in 2D Lattices of Various Geometries -- Chapter5. Transport in the Two-Dimentional Honeycomb Lattice with Substitutional Disorder -- Chapter6. Transport in 2D Complex Plasma Crystals -- Chapter7. Conclusions. 
520 |a This thesis introduces the spectral approach to transport problems in infinite disordered systems characterized by Anderson-type Hamiltonians. The spectral approach determines (with probability one) the existence of extended states for nonzero disorder in infinite lattices of any dimension and geometry. Here, the author focuses on the critical 2D case, where previous numerical and experimental results have shown disagreement with theory. Not being based on scaling theory, the proposed method avoids issues related to boundary conditions and provides an alternative approach to transport problems where interaction with various types of disorder is considered. Beginning with a general overview of Anderson-type transport problems and their relevance to physical systems, it goes on to discuss in more detail the most relevant theoretical, numerical, and experimental developments in this field of research. The mathematical formulation of the innovative spectral approach is introduced together with a physical interpretation and discussion of its applicability to physical systems, followed by a numerical study of delocalization in the 2D disordered honeycomb, triangular, and square lattices. Transport in the 2D honeycomb lattice with substitutional disorder is investigated employing a spectral analysis of the quantum percolation problem. Next, the applicability of the method is extended to the classical regime, with an examination of diffusion of lattice waves in 2D disordered complex plasma crystals, along with discussion of proposed future developments in the study of complex transport problems using spectral theory. 
650 0 |a Condensed matter. 
650 0 |a Physics. 
650 0 |a Plasma (Ionized gases). 
650 0 |a Statistical physics. 
650 0 |a Mathematical physics. 
650 0 |a Partial differential equations. 
650 1 4 |a Condensed Matter Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P25005 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
650 2 4 |a Plasma Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P24040 
650 2 4 |a Statistical Physics and Dynamical Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P19090 
650 2 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030022112 
776 0 8 |i Printed edition:  |z 9783030022136 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-3-030-02212-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)