Machine Learning Paradigms: Theory and Application

The book focuses on machine learning. Divided into three parts, the first part discusses the feature selection problem. The second part then describes the application of machine learning in the classification problem, while the third part presents an overview of real-world applications of swarm-base...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Hassanien, Aboul Ella (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Studies in Computational Intelligence, 801
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I: Machine Learning in Feature Selection
  • Hybrid Feature Selection Method Based On The Genetic Algorithm And Pearson Correlation Coefficient
  • Weighting Attributes and Decision Rules through Rankings and Discretisation Parameters
  • Greedy Selection of Attributes to be Discretised
  • Part II: Machine Learning in Classification and Ontology
  • Machine learning for Enhancement Land Cover and Crop Types Classification.