Introduction to Simple Shock Waves in Air With Numerical Solutions Using Artificial Viscosity /

This book provides an elementary introduction to some one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner. Artificial viscosity is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Prunty, Seán (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Shock Wave and High Pressure Phenomena,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03406nam a2200517 4500
001 978-3-030-02565-6
003 DE-He213
005 20191220130545.0
007 cr nn 008mamaa
008 181213s2019 gw | s |||| 0|eng d
020 |a 9783030025656  |9 978-3-030-02565-6 
024 7 |a 10.1007/978-3-030-02565-6  |2 doi 
040 |d GrThAP 
050 4 |a TA357-359 
072 7 |a TGMF  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGMF  |2 thema 
082 0 4 |a 620.1064  |2 23 
100 1 |a Prunty, Seán.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Simple Shock Waves in Air   |h [electronic resource] :  |b With Numerical Solutions Using Artificial Viscosity /  |c by Seán Prunty. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIII, 247 p. 93 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Shock Wave and High Pressure Phenomena,  |x 2197-9529 
505 0 |a Brief outline of the equations of fluid flow -- Waves of finite amplitude -- Conditions across the shock: the Rankine-Hugoniot equations -- Numerical treatment of plane shocks -- Spherical shock waves: the self-similar solution -- Numerical treatment of spherical shock waves. 
520 |a This book provides an elementary introduction to some one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner. Artificial viscosity is introduced into the numerical calculations in order to deal with shocks. The presentation is restricted to the finite-difference approach to solve the coupled differential equations of fluid flow as distinct from finite-volume or finite-element methods. This text presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation. 
650 0 |a Fluid mechanics. 
650 0 |a Fluids. 
650 0 |a Mathematical physics. 
650 0 |a Physics. 
650 1 4 |a Engineering Fluid Dynamics.  |0 http://scigraph.springernature.com/things/product-market-codes/T15044 
650 2 4 |a Fluid- and Aerodynamics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21026 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M13120 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030025649 
776 0 8 |i Printed edition:  |z 9783030025663 
830 0 |a Shock Wave and High Pressure Phenomena,  |x 2197-9529 
856 4 0 |u https://doi.org/10.1007/978-3-030-02565-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)