A Pythagorean Introduction to Number Theory Right Triangles, Sums of Squares, and Arithmetic /

Right triangles are at the heart of this textbook's vibrant new approach to elementary number theory. Inspired by the familiar Pythagorean theorem, the author invites the reader to ask natural arithmetic questions about right triangles, then proceeds to develop the theory needed to respond. Thr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Takloo-Bighash, Ramin (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03911nam a2200445 4500
001 978-3-030-02604-2
003 DE-He213
005 20190617221119.0
007 cr nn 008mamaa
008 181126s2018 gw | s |||| 0|eng d
020 |a 9783030026042  |9 978-3-030-02604-2 
024 7 |a 10.1007/978-3-030-02604-2  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Takloo-Bighash, Ramin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Pythagorean Introduction to Number Theory  |h [electronic resource] :  |b Right Triangles, Sums of Squares, and Arithmetic /  |c by Ramin Takloo-Bighash. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVIII, 279 p. 24 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Part I Foundational Material -- 1. Introduction -- 2. Basic number theory -- 3. Integral solutions to the Pythagorean Equation -- 4. What integers are areas of right triangles? -- 5. What numbers are the edges of a right triangle? -- 6. Primes of the form 4k+1 -- 7. Gauss sums, Quadratic Reciprocity, and the Jacobi symbol -- Part II Advanced Topics -- 8. Counting Pythagorean triples modulo an integer -- 9. How many lattice points are there on a circle or a sphere? -- 10. What about geometry? -- 11. Another proof of the four squares theorem -- 12. Quadratic forms and sums of squares -- 13. How many Pythagorean triples are there? -- 14. How are rational points distributed, really? -- Part III Appendices -- A. Background -- B. Algebraic integers -- C. SageMath -- References -- Index. 
520 |a Right triangles are at the heart of this textbook's vibrant new approach to elementary number theory. Inspired by the familiar Pythagorean theorem, the author invites the reader to ask natural arithmetic questions about right triangles, then proceeds to develop the theory needed to respond. Throughout, students are encouraged to engage with the material by posing questions, working through exercises, using technology, and learning about the broader context in which ideas developed. Progressing from the fundamentals of number theory through to Gauss sums and quadratic reciprocity, the first part of this text presents an innovative first course in elementary number theory. The advanced topics that follow, such as counting lattice points and the four squares theorem, offer a variety of options for extension, or a higher-level course; the breadth and modularity of the later material is ideal for creating a senior capstone course. Numerous exercises are included throughout, many of which are designed for SageMath. By involving students in the active process of inquiry and investigation, this textbook imbues the foundations of number theory with insights into the lively mathematical process that continues to advance the field today. Experience writing proofs is the only formal prerequisite for the book, while a background in basic real analysis will enrich the reader's appreciation of the final chapters. 
650 0 |a Number theory. 
650 1 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030026035 
776 0 8 |i Printed edition:  |z 9783030026059 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u https://doi.org/10.1007/978-3-030-02604-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)