Memetic Computation The Mainspring of Knowledge Transfer in a Data-Driven Optimization Era /

This book bridges the widening gap between two crucial constituents of computational intelligence: the rapidly advancing technologies of machine learning in the digital information age, and the relatively slow-moving field of general-purpose search and optimization algorithms. With this in mind, the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gupta, Abhishek (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Ong, Yew-Soon (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Adaptation, Learning, and Optimization, 21
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04663nam a2200505 4500
001 978-3-030-02729-2
003 DE-He213
005 20191022072305.0
007 cr nn 008mamaa
008 181218s2019 gw | s |||| 0|eng d
020 |a 9783030027292  |9 978-3-030-02729-2 
024 7 |a 10.1007/978-3-030-02729-2  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Gupta, Abhishek.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Memetic Computation  |h [electronic resource] :  |b The Mainspring of Knowledge Transfer in a Data-Driven Optimization Era /  |c by Abhishek Gupta, Yew-Soon Ong. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XI, 104 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Adaptation, Learning, and Optimization,  |x 1867-4534 ;  |v 21 
505 0 |a Introduction: Rise of Memetics in Computing -- Canonical Memetic Algorithms -- Data-Driven Adaptation in Memetic Algorithms -- The Memetic Automaton -- Sequential Knowledge Transfer across Problems -- Multitask Knowledge Transfer across Problems -- Future Direction: Meme Space Evolutions. 
520 |a This book bridges the widening gap between two crucial constituents of computational intelligence: the rapidly advancing technologies of machine learning in the digital information age, and the relatively slow-moving field of general-purpose search and optimization algorithms. With this in mind, the book serves to offer a data-driven view of optimization, through the framework of memetic computation (MC). The authors provide a summary of the complete timeline of research activities in MC - beginning with the initiation of memes as local search heuristics hybridized with evolutionary algorithms, to their modern interpretation as computationally encoded building blocks of problem-solving knowledge that can be learned from one task and adaptively transmitted to another. In the light of recent research advances, the authors emphasize the further development of MC as a simultaneous problem learning and optimization paradigm with the potential to showcase human-like problem-solving prowess; that is, by equipping optimization engines to acquire increasing levels of intelligence over time through embedded memes learned independently or via interactions. In other words, the adaptive utilization of available knowledge memes makes it possible for optimization engines to tailor custom search behaviors on the fly - thereby paving the way to general-purpose problem-solving ability (or artificial general intelligence). In this regard, the book explores some of the latest concepts from the optimization literature, including, the sequential transfer of knowledge across problems, multitasking, and large-scale (high dimensional) search, systematically discussing associated algorithmic developments that align with the general theme of memetics. The presented ideas are intended to be accessible to a wide audience of scientific researchers, engineers, students, and optimization practitioners who are familiar with the commonly used terminologies of evolutionary computation. A full appreciation of the mathematical formalizations and algorithmic contributions requires an elementary background in probability, statistics, and the concepts of machine learning. A prior knowledge of surrogate-assisted/Bayesian optimization techniques is useful, but not essential. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical optimization. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26008 
700 1 |a Ong, Yew-Soon.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030027285 
776 0 8 |i Printed edition:  |z 9783030027308 
830 0 |a Adaptation, Learning, and Optimization,  |x 1867-4534 ;  |v 21 
856 4 0 |u https://doi.org/10.1007/978-3-030-02729-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)