Algebraic Curves Towards Moduli Spaces /

This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying indivi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kazaryan, Maxim E. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Lando, Sergei K. (http://id.loc.gov/vocabulary/relators/aut), Prasolov, Victor V. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Moscow Lectures, 2
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04702nam a2200517 4500
001 978-3-030-02943-2
003 DE-He213
005 20191220131257.0
007 cr nn 008mamaa
008 190121s2018 gw | s |||| 0|eng d
020 |a 9783030029432  |9 978-3-030-02943-2 
024 7 |a 10.1007/978-3-030-02943-2  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Kazaryan, Maxim E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebraic Curves  |h [electronic resource] :  |b Towards Moduli Spaces /  |c by Maxim E. Kazaryan, Sergei K. Lando, Victor V. Prasolov. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIV, 231 p. 37 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Moscow Lectures,  |x 2522-0314 ;  |v 2 
505 0 |a Introduction -- 1 Preliminaries - 2 Algebraic curves -- 3 Complex structure and the topology of curves -- 4 Curves in projective spaces -- 5 Plücker formulas -- 6 Mappings of curves -- 7 Differential 1-forms on curves -- 8 Line bundles, linear systems, and divisors -- 9 Riemann-Roch formula and its applications -- 10 Proof of the Riemann-Roch formula -- 11 Weierstrass points -- 12 Abel's theorem -- 13 Examples of moduli spaces -- 14 Approaches to constructing moduli spaces -- 15 Moduli spaces of rational curves with marked points -- 16 Stable curves -- 17 A backward look from the viewpoint of characteristic classes -- 18 Moduli spaces of stable maps -- 19 Exam problems -- References -- Index. 
520 |a This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves - such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points - are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework. 
650 0 |a Algebraic geometry. 
650 0 |a Functions of complex variables. 
650 0 |a Mathematical physics. 
650 1 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
650 2 4 |a Functions of a Complex Variable.  |0 http://scigraph.springernature.com/things/product-market-codes/M12074 
650 2 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
700 1 |a Lando, Sergei K.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Prasolov, Victor V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030029425 
776 0 8 |i Printed edition:  |z 9783030029449 
830 0 |a Moscow Lectures,  |x 2522-0314 ;  |v 2 
856 4 0 |u https://doi.org/10.1007/978-3-030-02943-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)