Adaptive Resonance Theory in Social Media Data Clustering Roles, Methodologies, and Applications /

Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data: Basic knowledge (data & challenges) on social media analytics Clustering as a fundamental technique for unsupervised knowledge...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Meng, Lei (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Tan, Ah-Hwee (http://id.loc.gov/vocabulary/relators/aut), Wunsch II, Donald C. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Advanced Information and Knowledge Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04446nam a2200553 4500
001 978-3-030-02985-2
003 DE-He213
005 20191028131304.0
007 cr nn 008mamaa
008 190430s2019 gw | s |||| 0|eng d
020 |a 9783030029852  |9 978-3-030-02985-2 
024 7 |a 10.1007/978-3-030-02985-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Meng, Lei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Adaptive Resonance Theory in Social Media Data Clustering  |h [electronic resource] :  |b Roles, Methodologies, and Applications /  |c by Lei Meng, Ah-Hwee Tan, Donald C. Wunsch II. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XV, 190 p. 53 illus., 34 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
505 0 |a Part 1: Theories -- Introduction -- Clustering and Extensions in the Social Media Domain -- Adaptive Resonance Theory (ART) for Social Media Analytics -- Part II: Applications -- Personalized Web Image Organization -- Socially-Enriched Multimedia Data Co-Clustering -- Community Discovery in Heterogeneous Social Networks -- Online Multimodal Co-Indexing and Retrieval of Social Media Data -- Concluding Remarks. 
520 |a Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data: Basic knowledge (data & challenges) on social media analytics Clustering as a fundamental technique for unsupervised knowledge discovery and data mining A class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domain Adaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction. It presents initiatives on the mathematical demonstration of ART's learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks. Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you: How to process big streams of multimedia data? How to analyze social networks with heterogeneous data? How to understand a user's interests by learning from online posts and behaviors? How to create a personalized search engine by automatically indexing and searching multimodal information resources? 
650 0 |a Data mining. 
650 0 |a Algorithms. 
650 0 |a Cognitive psychology. 
650 0 |a Pattern recognition. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Cognitive Psychology.  |0 http://scigraph.springernature.com/things/product-market-codes/Y20060 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
700 1 |a Tan, Ah-Hwee.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wunsch II, Donald C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030029845 
776 0 8 |i Printed edition:  |z 9783030029869 
830 0 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
856 4 0 |u https://doi.org/10.1007/978-3-030-02985-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)