A Concise Introduction to Measure Theory

This undergraduate textbook offers a self-contained and concise introduction to measure theory and integration. The author takes an approach to integration based on the notion of distribution. This approach relies on deeper properties of the Riemann integral which may not be covered in standard unde...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shirali, Satish (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02777nam a2200469 4500
001 978-3-030-03241-8
003 DE-He213
005 20191024171301.0
007 cr nn 008mamaa
008 190227s2018 gw | s |||| 0|eng d
020 |a 9783030032418  |9 978-3-030-03241-8 
024 7 |a 10.1007/978-3-030-03241-8  |2 doi 
040 |d GrThAP 
050 4 |a QA312-312.5 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKL  |2 thema 
082 0 4 |a 515.42  |2 23 
100 1 |a Shirali, Satish.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Concise Introduction to Measure Theory  |h [electronic resource] /  |c by Satish Shirali. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 271 p. 17 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 1. Preliminaries -- 2. Measure Space and Integral -- 3. Properties of the Integral -- 4. Construction of a Measure. 5. The Counting Measure -- 6. Product Measures -- 7. Differentiation -- 8. The Cantor Set and Function -- Solutions -- References -- Index. 
520 |a This undergraduate textbook offers a self-contained and concise introduction to measure theory and integration. The author takes an approach to integration based on the notion of distribution. This approach relies on deeper properties of the Riemann integral which may not be covered in standard undergraduate courses. It has certain advantages, notably simplifying the extension to "fuzzy" measures, which is one of the many topics covered in the book. This book will be accessible to undergraduate students who have completed a first course in the foundations of analysis. Containing numerous examples as well as fully solved exercises, it is exceptionally well suited for self-study or as a supplement to lecture courses. 
650 0 |a Measure theory. 
650 0 |a Calculus. 
650 0 |a Functions of real variables. 
650 1 4 |a Measure and Integration.  |0 http://scigraph.springernature.com/things/product-market-codes/M12120 
650 2 4 |a Calculus.  |0 http://scigraph.springernature.com/things/product-market-codes/M12220 
650 2 4 |a Real Functions.  |0 http://scigraph.springernature.com/things/product-market-codes/M12171 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030032401 
776 0 8 |i Printed edition:  |z 9783030032425 
856 4 0 |u https://doi.org/10.1007/978-3-030-03241-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)