Vertex-Frequency Analysis of Graph Signals

This book introduces new methods to analyze vertex-varying graph signals. In many real-world scenarios, the data sensing domain is not a regular grid, but a more complex network that consists of sensing points (vertices) and edges (relating the sensing points). Furthermore, sensing geometry or sign...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Stanković, Ljubiša (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Sejdić, Ervin (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Signals and Communication Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04737nam a2200577 4500
001 978-3-030-03574-7
003 DE-He213
005 20191025201742.0
007 cr nn 008mamaa
008 181130s2019 gw | s |||| 0|eng d
020 |a 9783030035747  |9 978-3-030-03574-7 
024 7 |a 10.1007/978-3-030-03574-7  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
072 7 |a TTBM  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TTBM  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Vertex-Frequency Analysis of Graph Signals  |h [electronic resource] /  |c edited by Ljubiša Stanković, Ervin Sejdić. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XV, 507 p. 196 illus., 170 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4862 
505 0 |a Introduction to Graph Signal Processing -- Oversampled Graph Laplacian Matrix for Graph Filter Banks -- Toward an Uncertainty Principle for Weighted Graphs -- Graph Theoretic Uncertainty and Feasibility -- Signal-Adapted Tight Frames on Graphs -- Local Spectral Analysis of the Cerebral Cortex: New Gyrification Indices -- Intrinsic Geometric Information Transfer Learning on Multiple Graph-Structured Datasets. 
520 |a  This book introduces new methods to analyze vertex-varying graph signals. In many real-world scenarios, the data sensing domain is not a regular grid, but a more complex network that consists of sensing points (vertices) and edges (relating the sensing points). Furthermore, sensing geometry or signal properties define the relation among sensed signal points. Even for the data sensed in the well-defined time or space domain, the introduction of new relationships among the sensing points may produce new insights in the analysis and result in more advanced data processing techniques. The data domain, in these cases and discussed in this book, is defined by a graph. Graphs exploit the fundamental relations among the data points. Processing of signals whose sensing domains are defined by graphs resulted in graph data processing as an emerging field in signal processing. Although signal processing techniques for the analysis of time-varying signals are well established, the corresponding graph signal processing equivalent approaches are still in their infancy. This book presents novel approaches to analyze vertex-varying graph signals. The vertex-frequency analysis methods use the Laplacian or adjacency matrix to establish connections between vertex and spectral (frequency) domain in order to analyze local signal behavior where edge connections are used for graph signal localization. The book applies combined concepts from time-frequency and wavelet analyses of classical signal processing to the analysis of graph signals. Covering analytical tools for vertex-varying applications, this book is of interest to researchers and practitioners in engineering, science, neuroscience, genome processing, just to name a few. It is also a valuable resource for postgraduate students and researchers looking to expand their knowledge of the vertex-frequency analysis theory and its applications. The book consists of 15 chapters contributed by 41 leading researches in the field. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Graph theory. 
650 0 |a Physics. 
650 0 |a Neurosciences. 
650 1 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Graph Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M29020 
650 2 4 |a Applications of Graph Theory and Complex Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/P33010 
650 2 4 |a Neurosciences.  |0 http://scigraph.springernature.com/things/product-market-codes/B18006 
700 1 |a Stanković, Ljubiša.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sejdić, Ervin.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030035730 
776 0 8 |i Printed edition:  |z 9783030035754 
830 0 |a Signals and Communication Technology,  |x 1860-4862 
856 4 0 |u https://doi.org/10.1007/978-3-030-03574-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)