Symmetries of Maldacena-Wilson Loops from Integrable String Theory

The book discusses hidden symmetries in the Anti-de Sitter/conformal field theory (AdS/CFT) duality. This duality is a modern concept that asserts an exact duality between conformally invariant quantum field theories and string theories in higher dimensional Anti-de Sitter spaces, and in this way pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Münkler, Hagen (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03433nam a2200481 4500
001 978-3-030-03605-8
003 DE-He213
005 20191023132223.0
007 cr nn 008mamaa
008 181124s2018 gw | s |||| 0|eng d
020 |a 9783030036058  |9 978-3-030-03605-8 
024 7 |a 10.1007/978-3-030-03605-8  |2 doi 
040 |d GrThAP 
050 4 |a QC174.45-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHS  |2 thema 
082 0 4 |a 530.14  |2 23 
100 1 |a Münkler, Hagen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Symmetries of Maldacena-Wilson Loops from Integrable String Theory  |h [electronic resource] /  |c by Hagen Münkler. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 210 p. 28 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Symmetries, Fields and Loops -- Symmetric Space Models -- Minimal Surfaces in AdS -- Away from Strong Coupling -- Semisymmetric Space Models -- Minimal Surfaces in Superspace -- Conclusion and Outlook. 
520 |a The book discusses hidden symmetries in the Anti-de Sitter/conformal field theory (AdS/CFT) duality. This duality is a modern concept that asserts an exact duality between conformally invariant quantum field theories and string theories in higher dimensional Anti-de Sitter spaces, and in this way provides a completely new tool for the study of strongly coupled quantum field theories. In this setting, the book focuses on the Wilson loop, an important observable in four-dimensional maximally supersymmetric gauge theory. The dual string description using minimal surfaces enables a systematic study of the hidden symmetries of the loop. The book presents major findings, including the discovery of a master symmetry for strings in general symmetric spaces, its relation to the Yangian symmetry algebra and its action on the minimal surfaces appearing in the dual string description of the Wilson loop. Moreover, it clarifies why certain symmetries are not present on the gauge theory side for purely bosonic Wilson loops and, lastly, how the supersymmetrization of the minimal surface problem for type IIB superstrings can be undertaken. As such, it substantially increases our understanding and use of infinite dimensional symmetries occurring in the AdS/CFT correspondence. 
650 0 |a Quantum field theory. 
650 0 |a String theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Quantum Field Theories, String Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/P19048 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M13120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030036041 
776 0 8 |i Printed edition:  |z 9783030036065 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-3-030-03605-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)