Large Scale Data Analytics

This book presents a language integrated query framework for big data. The continuous, rapid growth of data information to volumes of up to terabytes (1,024 gigabytes) or petabytes (1,048,576 gigabytes) means that the need for a system to manage and query information from large scale data sources is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cho, Chung Yik (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Tan, Rong Kun Jason (http://id.loc.gov/vocabulary/relators/aut), Leong, John A. (http://id.loc.gov/vocabulary/relators/aut), Sidhu, Amandeep S. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Data, Semantics and Cloud Computing, 806
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03110nam a2200505 4500
001 978-3-030-03892-2
003 DE-He213
005 20191026081846.0
007 cr nn 008mamaa
008 190109s2019 gw | s |||| 0|eng d
020 |a 9783030038922  |9 978-3-030-03892-2 
024 7 |a 10.1007/978-3-030-03892-2  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Cho, Chung Yik.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Large Scale Data Analytics  |h [electronic resource] /  |c by Chung Yik Cho, Rong Kun Jason Tan, John A. Leong, Amandeep S. Sidhu. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a IX, 89 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Data, Semantics and Cloud Computing,  |x 2524-6593 ;  |v 806 
505 0 |a Introduction -- Background -- Large Scale Data Analytics -- Query Framework -- Results and Discussion -- Conclusion and Future Works. 
520 |a This book presents a language integrated query framework for big data. The continuous, rapid growth of data information to volumes of up to terabytes (1,024 gigabytes) or petabytes (1,048,576 gigabytes) means that the need for a system to manage and query information from large scale data sources is becoming more urgent. Currently available frameworks and methodologies are limited in terms of efficiency and querying compatibility between data sources due to the differences in information storage structures. For this research, the authors designed and programmed a framework based on the fundamentals of language integrated query to query existing data sources without the process of data restructuring. A web portal for the framework was also built to enable users to query protein data from the Protein Data Bank (PDB) and implement it on Microsoft Azure, a cloud computing environment known for its reliability, vast computing resources and cost-effectiveness. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematical and Computational Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T11006 
700 1 |a Tan, Rong Kun Jason.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Leong, John A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sidhu, Amandeep S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030038915 
776 0 8 |i Printed edition:  |z 9783030038939 
830 0 |a Data, Semantics and Cloud Computing,  |x 2524-6593 ;  |v 806 
856 4 0 |u https://doi.org/10.1007/978-3-030-03892-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)