Beyond Traditional Probabilistic Methods in Economics

This book presents recent research on probabilistic methods in economics, from machine learning to statistical analysis. Economics is a very important - and at the same a very difficult discipline. It is not easy to predict how an economy will evolve or to identify the measures needed to make an eco...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kreinovich, Vladik (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Thach, Nguyen Ngoc (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Trung, Nguyen Duc (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Van Thanh, Dang (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Studies in Computational Intelligence, 809
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03616nam a2200517 4500
001 978-3-030-04200-4
003 DE-He213
005 20191021232615.0
007 cr nn 008mamaa
008 181124s2019 gw | s |||| 0|eng d
020 |a 9783030042004  |9 978-3-030-04200-4 
024 7 |a 10.1007/978-3-030-04200-4  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Beyond Traditional Probabilistic Methods in Economics  |h [electronic resource] /  |c edited by Vladik Kreinovich, Nguyen Ngoc Thach, Nguyen Duc Trung, Dang Van Thanh. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIV, 1157 p. 206 illus., 124 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 809 
520 |a This book presents recent research on probabilistic methods in economics, from machine learning to statistical analysis. Economics is a very important - and at the same a very difficult discipline. It is not easy to predict how an economy will evolve or to identify the measures needed to make an economy prosper. One of the main reasons for this is the high level of uncertainty: different difficult-to-predict events can influence the future economic behavior. To make good predictions and reasonable recommendations, this uncertainty has to be taken into account. In the past, most related research results were based on using traditional techniques from probability and statistics, such as p-value-based hypothesis testing. These techniques led to numerous successful applications, but in the last decades, several examples have emerged showing that these techniques often lead to unreliable and inaccurate predictions. It is therefore necessary to come up with new techniques for processing the corresponding uncertainty that go beyond the traditional probabilistic techniques. This book focuses on such techniques, their economic applications and the remaining challenges, presenting both related theoretical developments and their practical applications. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Economic theory. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/W29000 
700 1 |a Kreinovich, Vladik.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Thach, Nguyen Ngoc.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Trung, Nguyen Duc.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Van Thanh, Dang.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030041991 
776 0 8 |i Printed edition:  |z 9783030042011 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 809 
856 4 0 |u https://doi.org/10.1007/978-3-030-04200-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)