Developing Enterprise Chatbots Learning Linguistic Structures /

A chatbot is expected to be capable of supporting a cohesive and coherent conversation and be knowledgeable, which makes it one of the most complex intelligent systems being designed nowadays. Designers have to learn to combine intuitive, explainable language understanding and reasoning approaches w...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Galitsky, Boris (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04313nam a2200469 4500
001 978-3-030-04299-8
003 DE-He213
005 20191017141130.0
007 cr nn 008mamaa
008 190404s2019 gw | s |||| 0|eng d
020 |a 9783030042998  |9 978-3-030-04299-8 
024 7 |a 10.1007/978-3-030-04299-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Galitsky, Boris.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Developing Enterprise Chatbots  |h [electronic resource] :  |b Learning Linguistic Structures /  |c by Boris Galitsky. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XV, 559 p. 198 illus., 132 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to Chatbots -- Social Chatbots and Development Platforms -- Chatbot Components and Architectures -- Providing Natural Language Access to a Database -- Chatbot Relevance at Syntactic Level -- Semantic Skeleton-based Search for Question and Answering Chatbots -- Relevance at the Level of Paragraph: Parse Thickets -- Chatbot Thesauri -- Content Processing Pipeline -- Achieving Rhetoric Agreement in a Conversation -- Discourse-level Dialogue Management,- Chatbots Providing and Accepting Argumentation. . 
520 |a A chatbot is expected to be capable of supporting a cohesive and coherent conversation and be knowledgeable, which makes it one of the most complex intelligent systems being designed nowadays. Designers have to learn to combine intuitive, explainable language understanding and reasoning approaches with high-performance statistical and deep learning technologies. Today, there are two popular paradigms for chatbot construction: 1. Build a bot platform with universal NLP and ML capabilities so that a bot developer for a particular enterprise, not being an expert, can populate it with training data; 2. Accumulate a huge set of training dialogue data, feed it to a deep learning network and expect the trained chatbot to automatically learn "how to chat". Although these two approaches are reported to imitate some intelligent dialogues, both of them are unsuitable for enterprise chatbots, being unreliable and too brittle. The latter approach is based on a belief that some learning miracle will happen and a chatbot will start functioning without a thorough feature and domain engineering by an expert and interpretable dialogue management algorithms. Enterprise high-performance chatbots with extensive domain knowledge require a mix of statistical, inductive, deep machine learning and learning from the web, syntactic, semantic and discourse NLP, ontology-based reasoning and a state machine to control a dialogue. This book will provide a comprehensive source of algorithms and architectures for building chatbots for various domains based on the recent trends in computational linguistics and machine learning. The foci of this book are applications of discourse analysis in text relevant assessment, dialogue management and content generation, which help to overcome the limitations of platform-based and data driven-based approaches. Supplementary material and code is available at https://github.com/bgalitsky/relevance-based-on-parse-trees. 
650 0 |a Artificial intelligence. 
650 0 |a Computational linguistics. 
650 0 |a Software engineering. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computational Linguistics.  |0 http://scigraph.springernature.com/things/product-market-codes/N22000 
650 2 4 |a Software Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/I14029 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030042981 
776 0 8 |i Printed edition:  |z 9783030043001 
856 4 0 |u https://doi.org/10.1007/978-3-030-04299-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)