Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods
This book presents novel classification algorithms for four challenging prediction tasks, namely learning from imbalanced, semi-supervised, multi-instance and multi-label data. The methods are based on fuzzy rough set theory, a mathematical framework used to model uncertainty in data. The book makes...
Κύριος συγγραφέας: | Vluymans, Sarah (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Studies in Computational Intelligence,
807 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Reasoning with Rough Sets Logical Approaches to Granularity-Based Framework /
ανά: Akama, Seiki, κ.ά.
Έκδοση: (2018) -
Rough Set-Based Classification Systems
ανά: Nowicki, Robert K., κ.ά.
Έκδοση: (2019) -
Learning from Imbalanced Data Sets
ανά: Fernández, Alberto, κ.ά.
Έκδοση: (2018) -
Fuzzy Sets and Operations Research
Έκδοση: (2019) -
Fuzzy Techniques: Theory and Applications Proceedings of the 2019 Joint World Congress of the International Fuzzy Systems Association and the Annual Conference of the North American Fuzzy Information Processing Society IFSA/NAFIPS'2019 (Lafayette, Louisiana, USA, June 18-21, 2019) /
Έκδοση: (2019)