Machine Learning in VLSI Computer-Aided Design

This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lith...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Elfadel, Ibrahim (Abe) M. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Boning, Duane S. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Li, Xin (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter1: A Preliminary Taxonomy for Machine Learning in VLSI CAD
  • Chapter2: Machine Learning for Compact Lithographic Process Models
  • Chapter3: Machine Learning for Mask Synthesis
  • Chapter4: Machine Learning in Physical Verification, Mask Synthesis, and Physical Design
  • Chapter5: Gaussian Process-Based Wafer-Level Correlation Modeling and its Applications
  • Chapter6: Machine Learning Approaches for IC Manufacturing Yield Enhancement
  • Chapter7: Efficient Process Variation Characterization by Virtual Probe
  • Chapter8: Machine learning for VLSI chip testing and semiconductor manufacturing process monitoring and improvement
  • Chapter9: Machine Learning based Aging Analysis
  • Chapter10: Extreme Statistics in Memories
  • Chapter11: Fast Statistical Analysis Using Machine Learning
  • Chapter12: Fast Statistical Analysis of Rare Circuit Failure Events
  • Chapter13: Learning from Limited Data in VLSI CAD
  • Chapter14: Large-Scale Circuit Performance Modeling by Bayesian Model Fusion
  • Chapter15: Sparse Relevance Kernel Machine Based Performance Dependency Analysis of Analog and Mixed-Signal Circuits
  • Chapter16: SiLVR: Projection Pursuit for Response Surface Modeling
  • Chapter17: Machine Learning based System Optimization and Uncertainty Quantification of Integrated Systems
  • Chapter18: SynTunSys: A Synthesis Parameter Autotuning System for Optimizing High-Performance Processors
  • Chapter19: Multicore Power and Thermal Proxies Using Least-Angle
  • Chapter20: A Comparative Study of Assertion Mining Algorithms in GoldMine
  • Chapter21: Energy-Efficient Design of Advanced Machine Learning Hardware.