Visual Saliency: From Pixel-Level to Object-Level Analysis

This book provides an introduction to recent advances in theory, algorithms and application of Boolean map distance for image processing. Applications include modeling what humans find salient or prominent in an image, and then using this for guiding smart image cropping, selective image filtering,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zhang, Jianming (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Malmberg, Filip (http://id.loc.gov/vocabulary/relators/aut), Sclaroff, Stan (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04605nam a2200541 4500
001 978-3-030-04831-0
003 DE-He213
005 20200220033058.0
007 cr nn 008mamaa
008 190121s2019 gw | s |||| 0|eng d
020 |a 9783030048310  |9 978-3-030-04831-0 
024 7 |a 10.1007/978-3-030-04831-0  |2 doi 
040 |d GrThAP 
050 4 |a TA1630-1650 
072 7 |a UYT  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYT  |2 thema 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
100 1 |a Zhang, Jianming.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Visual Saliency: From Pixel-Level to Object-Level Analysis  |h [electronic resource] /  |c by Jianming Zhang, Filip Malmberg, Stan Sclaroff. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VII, 138 p. 47 illus., 44 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Overview -- 2 Boolean Map Saliency: A Surprisingly Simple Method -- 3 A Distance Transform Perspective -- 4 Efficient Distance Transform for Salient Region Detection -- 5 Salient Object Subitizing -- 6 Unconstrained Salient Object Detection -- 7 Conclusion and Future Work. 
520 |a This book provides an introduction to recent advances in theory, algorithms and application of Boolean map distance for image processing. Applications include modeling what humans find salient or prominent in an image, and then using this for guiding smart image cropping, selective image filtering, image segmentation, image matting, etc. In this book, the authors present methods for both traditional and emerging saliency computation tasks, ranging from classical low-level tasks like pixel-level saliency detection to object-level tasks such as subitizing and salient object detection. For low-level tasks, the authors focus on pixel-level image processing approaches based on efficient distance transform. For object-level tasks, the authors propose data-driven methods using deep convolutional neural networks. The book includes both empirical and theoretical studies, together with implementation details of the proposed methods. Below are the key features for different types of readers. For computer vision and image processing practitioners: Efficient algorithms based on image distance transforms for two pixel-level saliency tasks; Promising deep learning techniques for two novel object-level saliency tasks; Deep neural network model pre-training with synthetic data; Thorough deep model analysis including useful visualization techniques and generalization tests; Fully reproducible with code, models and datasets available. For researchers interested in the intersection between digital topological theories and computer vision problems: Summary of theoretic findings and analysis of Boolean map distance; Theoretic algorithmic analysis; Applications in salient object detection and eye fixation prediction. Students majoring in image processing, machine learning and computer vision: This book provides up-to-date supplementary reading material for course topics like connectivity based image processing, deep learning for image processing; Some easy-to-implement algorithms for course projects with data provided (as links in the book); Hands-on programming exercises in digital topology and deep learning. 
650 0 |a Optical data processing. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Mathematics of Computing.  |0 http://scigraph.springernature.com/things/product-market-codes/I17001 
700 1 |a Malmberg, Filip.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sclaroff, Stan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030048303 
776 0 8 |i Printed edition:  |z 9783030048327 
856 4 0 |u https://doi.org/10.1007/978-3-030-04831-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)