Uncertainty Modeling for Engineering Applications

This book provides an overview of state-of-the-art uncertainty quantification (UQ) methodologies and applications, and covers a wide range of current research, future challenges and applications in various domains, such as aerospace and mechanical applications, structure health and seismic hazard, e...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Canavero, Flavio (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:PoliTO Springer Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04173nam a2200517 4500
001 978-3-030-04870-9
003 DE-He213
005 20191220130322.0
007 cr nn 008mamaa
008 181229s2019 gw | s |||| 0|eng d
020 |a 9783030048709  |9 978-3-030-04870-9 
024 7 |a 10.1007/978-3-030-04870-9  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Uncertainty Modeling for Engineering Applications  |h [electronic resource] /  |c edited by Flavio Canavero. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 184 p. 97 illus., 88 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a PoliTO Springer Series,  |x 2509-6796 
505 0 |a Quadrature Strategies for Constructing Polynomial Approximations -- Weighted reduced order methods for parametrized partial differential equations with random inputs -- A new approach for state estimation -- Data-efficient Sensitivity Analysis with Surrogate Modeling -- Application of Polynomial Chaos Expansions for Uncertainty Estimation in Angle-of-Arrival based Localization -- Surrogate Modeling for Fast Experimental Assessment of Specific Absorption Rate -- Stochastic Dosimetry for Radio-Frequency exposure assessment in realistic scenarios -- On the Various Applications of Stochastic Collocation in Computational Electromagnetics -- Reducing the statistical complexity of EMC testing: improvements for radiated experiments using stochastic collocation and bootstrap methods -- Hybrid Possibilistic-Probabilistic Approach to Uncertainty Quantification in Electromagnetic Compatibility Models -- Measurement uncertainty cannot always be calculated. 
520 |a This book provides an overview of state-of-the-art uncertainty quantification (UQ) methodologies and applications, and covers a wide range of current research, future challenges and applications in various domains, such as aerospace and mechanical applications, structure health and seismic hazard, electromagnetic energy (its impact on systems and humans) and global environmental state change. Written by leading international experts from different fields, the book demonstrates the unifying property of UQ theme that can be profitably adopted to solve problems of different domains. The collection in one place of different methodologies for different applications has the great value of stimulating the cross-fertilization and alleviate the language barrier among areas sharing a common background of mathematical modeling for problem solution. The book is designed for researchers, professionals and graduate students interested in quantitatively assessing the effects of uncertainties in their fields of application. The contents build upon the workshop "Uncertainty Modeling for Engineering Applications" (UMEMA 2017), held in Torino, Italy in November 2017. 
650 0 |a Computational intelligence. 
650 0 |a Quality control. 
650 0 |a Reliability. 
650 0 |a Industrial safety. 
650 0 |a Probabilities. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Quality Control, Reliability, Safety and Risk.  |0 http://scigraph.springernature.com/things/product-market-codes/T22032 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
700 1 |a Canavero, Flavio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030048693 
776 0 8 |i Printed edition:  |z 9783030048716 
830 0 |a PoliTO Springer Series,  |x 2509-6796 
856 4 0 |u https://doi.org/10.1007/978-3-030-04870-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)