An Introduction to Quantum and Vassiliev Knot Invariants

This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the boo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Jackson, David M. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Moffatt, Iain (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04413nam a2200529 4500
001 978-3-030-05213-3
003 DE-He213
005 20191024162055.0
007 cr nn 008mamaa
008 190504s2019 gw | s |||| 0|eng d
020 |a 9783030052133  |9 978-3-030-05213-3 
024 7 |a 10.1007/978-3-030-05213-3  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBMS  |2 thema 
072 7 |a PBPH  |2 thema 
082 0 4 |a 514.34  |2 23 
100 1 |a Jackson, David M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Quantum and Vassiliev Knot Invariants  |h [electronic resource] /  |c by David M. Jackson, Iain Moffatt. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XX, 422 p. 561 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 1613-5237 
505 0 |a Part I Basic Knot Theory -- Knots -- Knot and Link Invariants -- Framed Links -- Braids and the Braid Group -- Part II Quantum Knot Invariants -- R-Matrix Representations of Bn -- Knot Invariants through R-Matrix Representations of Bn -- Operator Invariants -- Ribbon Hopf Algebras -- Reshetikin-Turaev Invariants -- Part III Vassiliev Invarients -- The Fundamentals of Vassiliev Invariants -- Chord Diagrams -- Vassiliev Invariants of Framed Knots -- Jacobi Diagrams -- Lie Algebra Weight Systems -- Part IV The Kontsevich Invariant -- q-tangles -- Jacobi Diagrams on a 1-manifold -- A Construction of the Kontsevich Invariant -- Universality Properties of the Kontsevich Invariant -- Appendix A Background on Modules and Linear Algebra -- Appendix B Rewriting the Definition of Operator Invariants -- Appendix C Computations in Quasi-triangular Hopf Algebras -- Appendix D The Ribbon Hopf Algebra -- Appendix E A Proof of the Invariance of the Reshetikin-Turaev Invariants. 
520 |a This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 1 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 http://scigraph.springernature.com/things/product-market-codes/M28027 
650 2 4 |a Non-associative Rings and Algebras.  |0 http://scigraph.springernature.com/things/product-market-codes/M11116 
700 1 |a Moffatt, Iain.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030052126 
776 0 8 |i Printed edition:  |z 9783030052140 
830 0 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 1613-5237 
856 4 0 |u https://doi.org/10.1007/978-3-030-05213-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)