Data Science for Healthcare Methodologies and Applications /

This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Consoli, Sergio (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Reforgiato Recupero, Diego (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Petković, Milan (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04848nam a2200565 4500
001 978-3-030-05249-2
003 DE-He213
005 20191025231658.0
007 cr nn 008mamaa
008 190223s2019 gw | s |||| 0|eng d
020 |a 9783030052492  |9 978-3-030-05249-2 
024 7 |a 10.1007/978-3-030-05249-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Data Science for Healthcare  |h [electronic resource] :  |b Methodologies and Applications /  |c edited by Sergio Consoli, Diego Reforgiato Recupero, Milan Petković. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 367 p. 110 illus., 82 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I: Challenges and Basic Technologies -- Data Science in healthcare: benefits, challenges and opportunities -- Introduction to Classification Algorithms and their Performance Analysis using Medical Examples -- The role of deep learning in improving healthcare -- Part II: Specific Technologies and Applications -- Making effective use of healthcare data using data-to-text technology -- Clinical Natural Language Processing with Deep Learning -- Ontology-based Knowledge Management for Comprehensive Geriatric Assessment and Reminiscence Therapy on Social Robots -- Assistive Robots for the elderly: innovative tools to gather health relevant data -- Overview of data linkage methods for integrating separate health data sources -- A Flexible Knowledge-based Architecture For Supporting The Adoption of Healthy Lifestyles with Persuasive Dialogs -- Visual Analytics for Classifier Construction and Evaluation for Medical Data -- Data Visualization in Clinical Practice -- Using process analytics to improve healthcare processes -- A Multi-Scale Computational Approach to Understanding Cancer Metabolism -- Leveraging healthcare financial analytics for improving the health of entire populations. 
520 |a This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Health informatics. 
650 0 |a Information storage and retrieval. 
650 0 |a Application software. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Health Informatics.  |0 http://scigraph.springernature.com/things/product-market-codes/I23060 
650 2 4 |a Health Informatics.  |0 http://scigraph.springernature.com/things/product-market-codes/H28009 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
650 2 4 |a Information Systems Applications (incl. Internet).  |0 http://scigraph.springernature.com/things/product-market-codes/I18040 
700 1 |a Consoli, Sergio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Reforgiato Recupero, Diego.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Petković, Milan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030052485 
776 0 8 |i Printed edition:  |z 9783030052508 
856 4 0 |u https://doi.org/10.1007/978-3-030-05249-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)