Simplicial Methods for Higher Categories Segal-type Models of Weak n-Categories /

This monograph presents a new model of mathematical structures called weak $n$-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic. While strict $n$-categories are easily defined in t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Paoli, Simona (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Algebra and Applications, 26
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04756nam a2200541 4500
001 978-3-030-05674-2
003 DE-He213
005 20191023111703.0
007 cr nn 008mamaa
008 190603s2019 gw | s |||| 0|eng d
020 |a 9783030056742  |9 978-3-030-05674-2 
024 7 |a 10.1007/978-3-030-05674-2  |2 doi 
040 |d GrThAP 
050 4 |a QA169 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBC  |2 thema 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.6  |2 23 
100 1 |a Paoli, Simona.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Simplicial Methods for Higher Categories  |h [electronic resource] :  |b Segal-type Models of Weak n-Categories /  |c by Simona Paoli. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXII, 343 p. 262 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 1572-5553 ;  |v 26 
505 0 |a Part I -- Higher Categories: Introduction and Background -- An Introduction to Higher Categories -- Multi-simplicial techniques -- An Introduction to the three Segal-type models -- Techniques from 2-category theory -- Part II -- The Three Segal-Type Models and Segalic Pseudo-Functors -- Homotopically discrete n-fold categories -- The Definition of the three Segal-type models -- Properties of the Segal-type models -- Pseudo-functors modelling higher structures -- Part III -- Rigidification of Weakly Globular Tamsamani n-Categories by Simpler Ones -- Rigidifying weakly globular Tamsamani n-categories -- Part IV. Weakly globular n-fold categories as a model of weak n-categories -- Functoriality of homotopically discrete objects -- Weakly Globular n-Fold Categories as a Model of Weak n-Categories -- Conclusions and further directions -- A Proof of Lemma 0.1.4 -- References -- Index. 
520 |a This monograph presents a new model of mathematical structures called weak $n$-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic. While strict $n$-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The author proposes a new approach to this weakening, whose generality arises not from a weakening of such laws but from the very geometric structure of its cells; a geometry dubbed weak globularity. The new model, called weakly globular $n$-fold categories, is one of the simplest known algebraic structures yielding a model of weak $n$-categories. The central result is the equivalence of this model to one of the existing models, due to Tamsamani and further studied by Simpson. This theory has intended applications to homotopy theory, mathematical physics and to long-standing open questions in category theory. As the theory is described in elementary terms and the book is largely self-contained, it is accessible to beginning graduate students and to mathematicians from a wide range of disciplines well beyond higher category theory. The new model makes a transparent connection between higher category theory and homotopy theory, rendering it particularly suitable for category theorists and algebraic topologists. Although the results are complex, readers are guided with an intuitive explanation before each concept is introduced, and with diagrams showing the inter-connections between the main ideas and results. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Algebraic topology. 
650 0 |a Mathematical physics. 
650 0 |a Algebraic geometry. 
650 1 4 |a Category Theory, Homological Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11035 
650 2 4 |a Algebraic Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28019 
650 2 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030056735 
776 0 8 |i Printed edition:  |z 9783030056759 
830 0 |a Algebra and Applications,  |x 1572-5553 ;  |v 26 
856 4 0 |u https://doi.org/10.1007/978-3-030-05674-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)