Deep Learning: Fundamentals, Theory and Applications

The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how ma...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Huang, Kaizhu (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Hussain, Amir (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Wang, Qiu-Feng (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Zhang, Rui (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Cognitive Computation Trends, 2
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04160nam a2200529 4500
001 978-3-030-06073-2
003 DE-He213
005 20191220125833.0
007 cr nn 008mamaa
008 190215s2019 gw | s |||| 0|eng d
020 |a 9783030060732  |9 978-3-030-06073-2 
024 7 |a 10.1007/978-3-030-06073-2  |2 doi 
040 |d GrThAP 
050 4 |a R-RZ 
072 7 |a MBGR  |2 bicssc 
072 7 |a MED000000  |2 bisacsh 
072 7 |a MBGR  |2 thema 
082 0 4 |a 610  |2 23 
245 1 0 |a Deep Learning: Fundamentals, Theory and Applications  |h [electronic resource] /  |c edited by Kaizhu Huang, Amir Hussain, Qiu-Feng Wang, Rui Zhang. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VII, 163 p. 66 illus., 46 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Computation Trends,  |x 2524-5341 ;  |v 2 
505 0 |a Preface -- Introduction to Deep Density Models with Latent Variables -- Deep RNN Architecture: Design and Evaluation -- Deep Learning Based Handwritten Chinese Character and Text Recognition -- Deep Learning and Its Applications to Natural Language Processing -- Deep Learning for Natural Language Processing -- Oceanic Data Analysis with Deep Learning Models -- Index. 
520 |a The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how many deep learning methodologies have brought great breakthroughs in various applications of text, image, video, speech and audio processing. Deep learning (DL) has been widely considered as the next generation of machine learning methodology. DL attracts much attention and also achieves great success in pattern recognition, computer vision, data mining, and knowledge discovery due to its great capability in learning high-level abstract features from vast amount of data. This new book will not only attempt to provide a general roadmap or guidance to the current deep learning methodologies, but also present the challenges and envision new perspectives which may lead to further breakthroughs in this field. This book will serve as a useful reference for senior (undergraduate or graduate) students in computer science, statistics, electrical engineering, as well as others interested in studying or exploring the potential of exploiting deep learning algorithms. It will also be of special interest to researchers in the area of AI, pattern recognition, machine learning and related areas, alongside engineers interested in applying deep learning models in existing or new practical applications. 
650 0 |a Medicine. 
650 0 |a Artificial intelligence. 
650 0 |a Algorithms. 
650 1 4 |a Biomedicine, general.  |0 http://scigraph.springernature.com/things/product-market-codes/B0000X 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Algorithms.  |0 http://scigraph.springernature.com/things/product-market-codes/M14018 
700 1 |a Huang, Kaizhu.  |e editor.  |0 (orcid)0000-0002-3034-9639  |1 https://orcid.org/0000-0002-3034-9639  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hussain, Amir.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wang, Qiu-Feng.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zhang, Rui.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030060725 
776 0 8 |i Printed edition:  |z 9783030060749 
830 0 |a Cognitive Computation Trends,  |x 2524-5341 ;  |v 2 
856 4 0 |u https://doi.org/10.1007/978-3-030-06073-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)