Business and Consumer Analytics: New Ideas

This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sectio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Moscato, Pablo (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), de Vries, Natalie Jane (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Marketing meets Data Science: Bridging the gap
  • 2 Consumer behaviour and marketing fundamentals for business data analytics
  • 3 Introducing Clustering with a focus in Marketing and Consumer Analytics
  • 4 An Introduction to Proximity Graphs
  • 5 Clustering consumers and cluster-specific behavioural models
  • 6 Frequent Itemset Mining
  • 7 Business Network Analytics: From Graphs to Supernetworks
  • 8 Centrality in networks: Finding the most important nodes
  • 9 Overlapping communities in co-purchasing and social interaction graphs: a memetic approach
  • 10 Taming a Graph Hairball: Local Exploration in a Global Context
  • 11 Network-based models for social recommender systems
  • 12 Using Network Alignment to Identify Consumer Behaviour Modeling Constructs
  • 13 Memetic Algorithms for Business Analytics and Data Science: A Brief Survey
  • 14 A Memetic Algorithm for the Team Orienteering Problem
  • 15 A Memetic Algorithm for Competitive Facility Location Problems
  • 15 Visualizing Products and Consumers: A Gestalt Theory inspired method
  • 16 Visualizing Products and Consumers: A Gestalt Theory inspired method
  • 17 An overview of Meta-Analytics: The Promise of Unifying Metaheuristics and Analytics
  • 18 From Ensemble Learning to Meta-Analytics: A Review on Trends in Business Applications
  • 19 Metaheuristics and Classifier Ensembles
  • 20 A Multi-objective Meta-Analytic Method for Customer Churn Prediction
  • 21 Hotel classification using meta-analytics: a case study with cohesive clustering
  • 22 Fuzzy clustering in travel and tourism analytics
  • 23 Towards Personalized Data-Driven Bundle Design with QoS Constraint
  • 24 A fuzzy evaluation of tourism sustainability
  • 25 New Ideas in ranking for Personalised Fashion Recommender Systems
  • 26 Datasets for Business and Consumer Analytics
  • .